BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25955850)

  • 1. Class-DE Ultrasound Transducer Driver for HIFU Therapy.
    Christoffersen C; Wong W; Pichardo S; Togtema G; Curiel L
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):375-82. PubMed ID: 25955850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi Class-DE Driving of HIFU Transducer Arrays.
    Christoffersen C; Ngo T; Song R; Zhou Y; Pichardo S; Curiel L
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):214-224. PubMed ID: 30575547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.
    Pichardo S; Silva RR; Rubel O; Curiel L
    PLoS One; 2015; 10(9):e0139178. PubMed ID: 26418550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIFU Power Monitoring Using Combined Instantaneous Current and Voltage Measurement.
    Adams C; McLaughlan JR; Carpenter TM; Freear S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):239-247. PubMed ID: 31514135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.
    Jeong JS; Cannata JM; Shung KK
    Phys Med Biol; 2010 Apr; 55(7):1889-902. PubMed ID: 20224162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy.
    Auboiroux V; Dumont E; Petrusca L; Viallon M; Salomir R
    Phys Med Biol; 2011 Jun; 56(12):3563-82. PubMed ID: 21606558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated HIFU Drive System on a Chip for CMUT-Based Catheter Ablation System.
    Farhanieh O; Sahafi A; Bardhan Roy R; Ergun AS; Bozkurt A
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):534-546. PubMed ID: 28333640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Inverted Multifrequency HIFU Transducer for Lesion Expansion: A Simulation Study.
    Kwon DS; Sung JH; Park CY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1125-1132. PubMed ID: 29993367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of photoacoustic imaging and high-intensity focused ultrasound.
    Cui H; Staley J; Yang X
    J Biomed Opt; 2010; 15(2):021312. PubMed ID: 20459234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer.
    Ma J; Guo S; Wu D; Geng X; Jiang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1519-29. PubMed ID: 25004519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping fabrication of focused ultrasound transducers.
    Kim Y; Maxwell AD; Hall TL; Xu Z; Lin KW; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1559-74. PubMed ID: 25167156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials.
    Constanciel E; N'Djin WA; Bessière F; Chavrier F; Grinberg D; Vignot A; Chevalier P; Chapelon JY; Lafon C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1868-83. PubMed ID: 24658718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental methods for improved spatial control of thermal lesions in magnetic resonance-guided focused ultrasound ablation.
    Viallon M; Petrusca L; Auboiroux V; Goget T; Baboi L; Becker CD; Salomir R
    Ultrasound Med Biol; 2013 Sep; 39(9):1580-95. PubMed ID: 23820250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and ex vivo kidney evaluation of a high-intensity focused ultrasound transducer and 3D positioner.
    Lweesy K; Fraiwan L; Shatat A; Abdo G; Dawodiah A; Sameer M
    Med Biol Eng Comput; 2010 Mar; 48(3):269-76. PubMed ID: 20012374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual concentric-sectored HIFU transducer with phase-shifted ultrasound excitation for expanded necrotic region: a simulation study.
    Jeong J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):924-31. PubMed ID: 23661126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ex Vivo HIFU Experiments Using a $32 \times 32$ -Element CMUT Array.
    Yoon HS; Chang C; Jang JH; Bhuyan A; Choe JW; Nikoozadeh A; Watkins RD; Stephens DN; Butts Pauly K; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Dec; 63(12):2150-2158. PubMed ID: 27913330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.