These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25956035)

  • 1. Interaction of (12)C ions with the mouse retinal response to light.
    Carozzo S; Ball SL; Narici L; Schardt D; Sannita WG
    Neurosci Lett; 2015 Jun; 598():36-40. PubMed ID: 25956035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological responses of the mouse retina to 12C ions.
    Sannita WG; Peachey NS; Strettoi E; Ball SL; Belli F; Bidoli V; Carozzo S; Casolino M; Di Fino L; Picozza P; Pignatelli V; Rinaldi A; Saturno M; Schardt D; Vazquez M; Zaconte V; Narici L
    Neurosci Lett; 2007 Apr; 416(3):231-5. PubMed ID: 17376593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive visual phenomena in space: A scientific case and a safety issue in space travel.
    Sannita WG; Narici L; Picozza P
    Vision Res; 2006 Jul; 46(14):2159-65. PubMed ID: 16510166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correspondences in the behavior of the electroretinogram and of the potentials evoked at the visual cortex.
    CRESCITELLI F; GARDNER E
    J Gen Physiol; 1961 May; 44(5):911-28. PubMed ID: 13696406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Cerenkov radiation in the eye-flashes observed by Apollo astronauts.
    McNulty PJ; Pease VP; Bond VP
    Life Sci Space Res; 1976; 14():205-17. PubMed ID: 12678106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apollo-Soyuz light-flash observations.
    Budinger TF; Tobias CA; Huesman RH; Upham FT; Wieskamp TF; Hoffman RA
    Life Sci Space Res; 1977; 15():141-6. PubMed ID: 11958208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light flashes in cancer patients treated with heavy ions.
    Schardt D; Kavatsyuk O; Krämer M; Durante M
    Brain Stimul; 2013 May; 6(3):416-7. PubMed ID: 22939278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma.
    Georgiou AL; Guo L; Francesca Cordeiro M; Salt TE
    Curr Eye Res; 2014 May; 39(5):472-86. PubMed ID: 24215221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease.
    White DA; Fritz JJ; Hauswirth WW; Kaushal S; Lewin AS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1942-51. PubMed ID: 17460245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of retinal acuity in infants evaluated with pattern electroretinogram.
    Fiorentini A; Pirchio M; Sandini G
    Hum Neurobiol; 1984; 3(2):93-5. PubMed ID: 6746336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse.
    Li Q; Timmers AM; Hunter K; Gonzalez-Pola C; Lewin AS; Reitze DH; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2981-9. PubMed ID: 11687546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal degeneration in the nervous mutant mouse. III. Electrophysiological studies of the visual pathway.
    Ren JC; LaVail MM; Peachey NS
    Exp Eye Res; 2000 Apr; 70(4):467-73. PubMed ID: 10865995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ames Waltzer deaf mice have reduced electroretinogram amplitudes and complex alternative splicing of Pcdh15 transcripts.
    Haywood-Watson RJ; Ahmed ZM; Kjellstrom S; Bush RA; Takada Y; Hampton LL; Battey JF; Sieving PA; Friedman TB
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3074-84. PubMed ID: 16799054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of Vaccinium uliginosum to the electroretinogram and retina of rabbits before and after light-induced damage].
    Yin L; Pi YL; Zhang MN
    Zhonghua Yan Ke Za Zhi; 2010 May; 46(5):446-51. PubMed ID: 20654220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.