These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 25956089)

  • 1. Finding mechanochemical pathways and barriers without transition state search.
    Avdoshenko SM; Makarov DE
    J Chem Phys; 2015 May; 142(17):174106. PubMed ID: 25956089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Quantum Mechanochemistry: Electronic Structure Methods and Force Analysis.
    Stauch T; Dreuw A
    Chem Rev; 2016 Nov; 116(22):14137-14180. PubMed ID: 27767298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry.
    Klein IM; Husic CC; Kovács DP; Choquette NJ; Robb MJ
    J Am Chem Soc; 2020 Sep; 142(38):16364-16381. PubMed ID: 32902274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Chemical Strain Analysis For Mechanochemical Processes.
    Stauch T; Dreuw A
    Acc Chem Res; 2017 Apr; 50(4):1041-1048. PubMed ID: 28339186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene.
    Bailey A; Mosey NJ
    J Chem Phys; 2012 Jan; 136(4):044102. PubMed ID: 22299856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanochemical transduction of externally applied forces to mechanophores.
    Ribas-Arino J; Shiga M; Marx D
    J Am Chem Soc; 2010 Aug; 132(30):10609-14. PubMed ID: 20662532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry.
    Konda SS; Brantley JN; Varghese BT; Wiggins KM; Bielawski CW; Makarov DE
    J Am Chem Soc; 2013 Aug; 135(34):12722-9. PubMed ID: 23905836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules.
    Konda SS; Avdoshenko SM; Makarov DE
    J Chem Phys; 2014 Mar; 140(10):104114. PubMed ID: 24628159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-tracking based stationary-point optimization.
    Bergeler M; Herrmann C; Reiher M
    J Comput Chem; 2015 Jul; 36(19):1429-38. PubMed ID: 26073318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical reactions modulated by mechanical stress: extended Bell theory.
    Konda SS; Brantley JN; Bielawski CW; Makarov DE
    J Chem Phys; 2011 Oct; 135(16):164103. PubMed ID: 22047224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules.
    Stauch T; Dreuw A
    J Chem Phys; 2014 Apr; 140(13):134107. PubMed ID: 24712780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways.
    Schaefer B; Mohr S; Amsler M; Goedecker S
    J Chem Phys; 2014 Jun; 140(21):214102. PubMed ID: 24907985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-Induced Catastrophes on Energy Landscapes: Mechanochemical Manipulation of Downhill and Uphill Bifurcations Explains the Ring-Opening Selectivity of Cyclopropanes.
    Wollenhaupt M; Schran C; Krupička M; Marx D
    Chemphyschem; 2018 Apr; 19(7):837-847. PubMed ID: 29232496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonadiabatic reaction of energetic molecules.
    Bhattacharya A; Guo Y; Bernstein ER
    Acc Chem Res; 2010 Dec; 43(12):1476-85. PubMed ID: 20931955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and application of a hybrid method involving interpolation and ab initio calculations for the determination of transition states.
    Goodrow A; Bell AT; Head-Gordon M
    J Chem Phys; 2008 Nov; 129(17):174109. PubMed ID: 19045335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Predicting Full Catalytic Cycle Using Automatic Reaction Path Search Method: A Case Study on HCo(CO)3-Catalyzed Hydroformylation.
    Maeda S; Morokuma K
    J Chem Theory Comput; 2012 Feb; 8(2):380-5. PubMed ID: 26596590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method.
    Maeda S; Taketsugu T; Morokuma K
    J Comput Chem; 2014 Jan; 35(2):166-73. PubMed ID: 24186858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition state-finding strategies for use with the growing string method.
    Goodrow A; Bell AT; Head-Gordon M
    J Chem Phys; 2009 Jun; 130(24):244108. PubMed ID: 19566143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-mechanochemical activity relationships for cyclobutane mechanophores.
    Kryger MJ; Munaretto AM; Moore JS
    J Am Chem Soc; 2011 Nov; 133(46):18992-8. PubMed ID: 22032443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.