These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 25956194)

  • 41. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering.
    Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK
    Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration.
    Lee JB; Jeong SI; Bae MS; Yang DH; Heo DN; Kim CH; Alsberg E; Kwon IK
    Tissue Eng Part A; 2011 Nov; 17(21-22):2695-702. PubMed ID: 21682540
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.
    Fedorovich NE; Kuipers E; Gawlitta D; Dhert WJ; Alblas J
    Tissue Eng Part A; 2011 Oct; 17(19-20):2473-86. PubMed ID: 21599540
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel apatite fiber scaffolds can promote three-dimensional proliferation of osteoblasts in rodent bone regeneration models.
    Morisue H; Matsumoto M; Chiba K; Matsumoto H; Toyama Y; Aizawa M; Kanzawa N; Fujimi TJ; Uchida H; Okada I
    J Biomed Mater Res A; 2009 Sep; 90(3):811-8. PubMed ID: 18615469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the effects of UV-C and pH on the mechanical behavior, molecular conformation and cell viability of collagen-based scaffold for vascular tissue engineering.
    Achilli M; Lagueux J; Mantovani D
    Macromol Biosci; 2010 Mar; 10(3):307-16. PubMed ID: 19946859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vascularization of wide pore agarose-gelatin cryogel scaffolds implanted subcutaneously in diabetic and non-diabetic mice.
    Bloch K; Vanichkin A; Damshkaln LG; Lozinsky VI; Vardi P
    Acta Biomater; 2010 Mar; 6(3):1200-5. PubMed ID: 19703598
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pH-responsive scaffolds for tissue regeneration: In vivo performance.
    Zarur M; Seijo-Rabina A; Goyanes A; Concheiro A; Alvarez-Lorenzo C
    Acta Biomater; 2023 Sep; 168():22-41. PubMed ID: 37482146
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theranostic biocomposite scaffold membrane.
    Roussakis E; Ortines RV; Pinsker BL; Mooers CT; Evans CL; Miller LS; Calderón-Colón X
    Biomaterials; 2019 Aug; 212():17-27. PubMed ID: 31100480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wound healing: Enzymatically crosslinked scaffolds.
    Grainger DW
    Nat Mater; 2015 Jul; 14(7):662-3. PubMed ID: 26099714
    [No Abstract]   [Full Text] [Related]  

  • 53. Special Collection: Closing the Gaps in Skin Wound Healing.
    Kearney CJ; Pandit A
    Tissue Eng Part A; 2016 Mar; 22(5-6):401-2. PubMed ID: 26671466
    [No Abstract]   [Full Text] [Related]  

  • 54. Engineered tumours: Roll-on scaffolds.
    DelNero P; Fischbach C
    Nat Mater; 2016 Feb; 15(2):138-9. PubMed ID: 26796732
    [No Abstract]   [Full Text] [Related]  

  • 55. [Acrylic intra-tissue, repair of the orbital region].
    VIRENQUE M
    Rev Odontol Parana; 1949 Apr; 71(4):308-11. PubMed ID: 18131460
    [No Abstract]   [Full Text] [Related]  

  • 56. Engineering Cell-ECM-Material Interactions for Musculoskeletal Regeneration.
    Jones CL; Penney BT; Theodossiou SK
    Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanomedicine and nanoparticle-based delivery systems in plastic and reconstructive surgery.
    Solidum JGN; Ceriales JA; Ong EP; Ornos EDB; Relador RJL; Quebral EPB; Lapeña JFF; Tantengco OAG; Lee KY
    Maxillofac Plast Reconstr Surg; 2023 Mar; 45(1):15. PubMed ID: 36995508
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches.
    Zhang X; Wang D; Wang Z; Ling SK; Yung PS; Tuan RS; Ker DFE
    J Orthop Translat; 2022 Sep; 36():91-108. PubMed ID: 36090820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile
    Swanson WB; Durdan M; Eberle M; Woodbury S; Mauser A; Gregory J; Zhang B; Niemann D; Herremans J; Ma PX; Lahann J; Weivoda M; Mishina Y; Greineder CF
    RSC Chem Biol; 2022 Jun; 3(6):748-764. PubMed ID: 35755193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stimuli-Responsive Materials for Tissue Engineering and Drug Delivery.
    Municoy S; Álvarez Echazú MI; Antezana PE; Galdopórpora JM; Olivetti C; Mebert AM; Foglia ML; Tuttolomondo MV; Alvarez GS; Hardy JG; Desimone MF
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.