These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25956647)

  • 1. Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater.
    Sulaymon AH; Faisal AA; Khaliefa QM
    J Hazard Mater; 2015 Oct; 297():160-72. PubMed ID: 25956647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal removal capacity of individual components of permeable reactive concrete.
    Holmes RR; Hart ML; Kevern JT
    J Contam Hydrol; 2017 Jan; 196():52-61. PubMed ID: 27993468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter.
    Kozyatnyk I; Haglund P; Lövgren L; Tysklind M; Gustafsson A; Törneman N
    Water Sci Technol; 2014; 70(1):32-9. PubMed ID: 25026576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in wastewater treatment.
    Salem WM; Sayed WF; Halawy SA; Elamary RB
    Ecotoxicol Environ Saf; 2015 Sep; 119():155-61. PubMed ID: 26004355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centripetal filtration of groundwater to improve the lifetime of an MgO recycled refractory filter: observations and technical challenges.
    de Repentigny C; Zagury GJ; Courcelles B
    Environ Sci Pollut Res Int; 2019 May; 26(15):15314-15323. PubMed ID: 30927225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of permeable sorption barriers for removal of Cd(II) and Zn(II) ions from contaminated groundwater.
    Zawierucha I; Nowik-Zajac A
    Water Sci Technol; 2019 Aug; 80(3):448-457. PubMed ID: 31596256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Removal of nitrate from groundwater using permeable reactive barrier].
    Li XL; Yang JJ; Lu XX; Zhang S; Hou Z
    Huan Jing Ke Xue; 2013 Mar; 34(3):914-8. PubMed ID: 23745394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers.
    Moraci N; Calabrò PS
    J Environ Manage; 2010 Nov; 91(11):2336-41. PubMed ID: 20643500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of lead by using Raschig rings manufactured with mixture of cement kiln dust, zeolite and bentonite.
    Salem A; Afshin H; Behsaz H
    J Hazard Mater; 2012 Jul; 223-224():13-23. PubMed ID: 22608209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.
    Mayacela Rojas CM; Rivera Velásquez MF; Tavolaro A; Molinari A; Fallico C
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28672800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of aeration, iron and arsenic concentrations, and groundwater matrix on arsenic removal using laboratory sand filtration.
    Coles CA; Rohail D
    Environ Geochem Health; 2020 Nov; 42(11):4051-4064. PubMed ID: 32696199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spent MgO-carbon refractory bricks as a material for permeable reactive barriers to treat a nickel- and cobalt-contaminated groundwater.
    de Repentigny C; Courcelles B; Zagury GJ
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23205-23214. PubMed ID: 29862480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.
    Jun D; Yongsheng Z; Weihong Z; Mei H
    J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium analysis for heavy metal cation removal using cement kiln dust.
    El Zayat M; Elagroudy S; El Haggar S
    Water Sci Technol; 2014; 70(6):1011-8. PubMed ID: 25259489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal adsorption by a formulated zeolite-Portland cement mixture.
    Ok YS; Yang JE; Zhang YS; Kim SJ; Chung DY
    J Hazard Mater; 2007 Aug; 147(1-2):91-6. PubMed ID: 17239531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel test method to determine the filter material service life of decentralized systems treating runoff from traffic areas.
    Huber M; Welker A; Dierschke M; Drewes JE; Helmreich B
    J Environ Manage; 2016 Sep; 179():66-75. PubMed ID: 27179341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal removal by bed filter materials used in domestic wastewater treatment.
    Renman A; Renman G; Gustafsson JP; Hylander L
    J Hazard Mater; 2009 Jul; 166(2-3):734-9. PubMed ID: 19157700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.
    Ahammed MM; Meera V
    J Hazard Mater; 2010 Sep; 181(1-3):788-93. PubMed ID: 20566239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of single and multilayered reactive zones for heavy metals removal from stormwater.
    Pawluk K; Fronczyk J
    Environ Technol; 2015; 36(9-12):1576-83. PubMed ID: 25496055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.