BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25956649)

  • 1. Assembly constraints drive co-evolution among ribosomal constituents.
    Mallik S; Akashi H; Kundu S
    Nucleic Acids Res; 2015 Jun; 43(11):5352-63. PubMed ID: 25956649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape.
    Bunner AE; Beck AH; Williamson JR
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5417-22. PubMed ID: 20207951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of a potential spring in the ribosome.
    Hedrick EG; Tanner DR; Baig A; Hill WE
    J Mol Biol; 2012 Feb; 415(5):833-42. PubMed ID: 22178475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of 30S ribosomal subunits in vitro using ribosome biogenesis factors.
    Tamaru D; Amikura K; Shimizu Y; Nierhaus KH; Ueda T
    RNA; 2018 Nov; 24(11):1512-1519. PubMed ID: 30076205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal small subunit domains radiate from a central core.
    Gulen B; Petrov AS; Okafor CD; Vander Wood D; O'Neill EB; Hud NV; Williams LD
    Sci Rep; 2016 Feb; 6():20885. PubMed ID: 26876483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity.
    Roy-Chaudhuri B; Kirthi N; Culver GM
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4567-72. PubMed ID: 20176963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimized rRNA-binding site for ribosomal protein S4 and its implications for 30S assembly.
    Bellur DL; Woodson SA
    Nucleic Acids Res; 2009 Apr; 37(6):1886-96. PubMed ID: 19190093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C-terminus of ribosomal protein uS4 contributes to small ribosomal subunit biogenesis and the fidelity of translation.
    Kamath D; Allgeyer BB; Gregory ST; Bielski MC; Roelofsz DM; Sabapathypillai SL; Vaid N; O'Connor M
    Biochimie; 2017 Jul; 138():194-201. PubMed ID: 28483689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation.
    Mallik S; Kundu S
    J Biomol Struct Dyn; 2015; 33(3):639-56. PubMed ID: 24697502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-guided RNA dynamics during early ribosome assembly.
    Kim H; Abeysirigunawarden SC; Chen K; Mayerle M; Ragunathan K; Luthey-Schulten Z; Ha T; Woodson SA
    Nature; 2014 Feb; 506(7488):334-8. PubMed ID: 24522531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20.
    Dutca LM; Culver GM
    J Mol Biol; 2008 Feb; 376(1):92-108. PubMed ID: 18155048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Evolution of Unmodified 16S rRNA for Simple Ribosome Reconstitution.
    Murase Y; Nakanishi H; Tsuji G; Sunami T; Ichihashi N
    ACS Synth Biol; 2018 Feb; 7(2):576-583. PubMed ID: 29053248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro reconstitution of functional small ribosomal subunit assembly for comprehensive analysis of ribosomal elements in E. coli.
    Shimojo M; Amikura K; Masuda K; Kanamori T; Ueda T; Shimizu Y
    Commun Biol; 2020 Mar; 3(1):142. PubMed ID: 32214223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular recognition and modification of the 30S ribosome by the aminoglycoside-resistance methyltransferase NpmA.
    Dunkle JA; Vinal K; Desai PM; Zelinskaya N; Savic M; West DM; Conn GL; Dunham CM
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6275-80. PubMed ID: 24717845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of conformational changes in 16 S rRNA during the course of 30 S subunit assembly.
    Holmes KL; Culver GM
    J Mol Biol; 2005 Nov; 354(2):340-57. PubMed ID: 16246364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit.
    Mulder AM; Yoshioka C; Beck AH; Bunner AE; Milligan RA; Potter CS; Carragher B; Williamson JR
    Science; 2010 Oct; 330(6004):673-7. PubMed ID: 21030658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancestral Interactions of Ribosomal RNA and Ribosomal Proteins.
    Lanier KA; Roy P; Schneider DM; Williams LD
    Biophys J; 2017 Jul; 113(2):268-276. PubMed ID: 28506527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.
    Yang Z; Guo Q; Goto S; Chen Y; Li N; Yan K; Zhang Y; Muto A; Deng H; Himeno H; Lei J; Gao N
    Protein Cell; 2014 May; 5(5):394-407. PubMed ID: 24671761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of Functionally Active Thermus thermophilus 30S Ribosomal Subunit from Ribosomal 16S RNA and Ribosomal Proteins.
    Agalarov S; Yusupov M; Yusupova G
    Methods Mol Biol; 2016; 1320():303-14. PubMed ID: 26227051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.
    Ghosh S; Joseph S
    RNA; 2005 May; 11(5):657-67. PubMed ID: 15811917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.