BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25956886)

  • 21. NMR structural analysis of the soluble domain of ZiaA-ATPase and the basis of selective interactions with copper metallochaperone Atx1.
    Banci L; Bertini I; Ciofi-Baffoni S; Poggi L; Vanarotti M; Tottey S; Waldron KJ; Robinson NJ
    J Biol Inorg Chem; 2010 Jan; 15(1):87-98. PubMed ID: 19609573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA.
    Zhou L; Singleton C; Hecht O; Moore GR; Le Brun NE
    FEBS J; 2012 Jan; 279(2):285-98. PubMed ID: 22077885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mutational study in the transmembrane domain of Ccc2p, the yeast Cu(I)-ATPase, shows different roles for each Cys-Pro-Cys cysteine.
    Lowe J; Vieyra A; Catty P; Guillain F; Mintz E; Cuillel M
    J Biol Chem; 2004 Jun; 279(25):25986-94. PubMed ID: 15078884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical characterization of P-type copper ATPases.
    Inesi G; Pilankatta R; Tadini-Buoninsegni F
    Biochem J; 2014 Oct; 463(2):167-76. PubMed ID: 25242165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On allosteric modulation of P-type Cu(+)-ATPases.
    Mattle D; Sitsel O; Autzen HE; Meloni G; Gourdon P; Nissen P
    J Mol Biol; 2013 Jul; 425(13):2299-308. PubMed ID: 23500486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems.
    Migocka M
    IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA.
    Mandal AK; Argüello JM
    Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assay of Copper Transfer and Binding to P1B-ATPases.
    Padilla-Benavides T; Argüello JM
    Methods Mol Biol; 2016; 1377():267-77. PubMed ID: 26695039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus.
    Argüello JM; Mandal AK; Mana-Capelli S
    Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toward a molecular understanding of metal transport by P(1B)-type ATPases.
    Rosenzweig AC; Argüello JM
    Curr Top Membr; 2012; 69():113-36. PubMed ID: 23046649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the two transmembrane Cu+ transport sites of the Cu+ -ATPases.
    González-Guerrero M; Eren E; Rawat S; Stemmler TL; Argüello JM
    J Biol Chem; 2008 Oct; 283(44):29753-9. PubMed ID: 18772137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase.
    Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC
    Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications.
    Myari A; Hadjiliadis N; Fatemi N; Sarkar B
    J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).
    Cater MA; La Fontaine S; Mercer JF
    Biochem J; 2007 Jan; 401(1):143-53. PubMed ID: 16939419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enthalpy-entropy compensation at play in human copper ion transfer.
    Niemiec MS; Dingeldein AP; Wittung-Stafshede P
    Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B.
    Tadini-Buoninsegni F; Smeazzetto S
    IUBMB Life; 2017 Apr; 69(4):218-225. PubMed ID: 28164426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.