These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25956886)

  • 41. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase.
    Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC
    Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochemical basis of regulation of human copper-transporting ATPases.
    Lutsenko S; LeShane ES; Shinde U
    Arch Biochem Biophys; 2007 Jul; 463(2):134-48. PubMed ID: 17562324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATP dependent charge movement in ATP7B Cu+-ATPase is demonstrated by pre-steady state electrical measurements.
    Tadini-Buoninsegni F; Bartolommei G; Moncelli MR; Pilankatta R; Lewis D; Inesi G
    FEBS Lett; 2010 Nov; 584(22):4619-22. PubMed ID: 20965182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interactions between metal-binding domains modulate intracellular targeting of Cu(I)-ATPase ATP7B, as revealed by nanobody binding.
    Huang Y; Nokhrin S; Hassanzadeh-Ghassabeh G; Yu CH; Yang H; Barry AN; Tonelli M; Markley JL; Muyldermans S; Dmitriev OY; Lutsenko S
    J Biol Chem; 2014 Nov; 289(47):32682-93. PubMed ID: 25253690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications.
    Myari A; Hadjiliadis N; Fatemi N; Sarkar B
    J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B).
    Cater MA; La Fontaine S; Mercer JF
    Biochem J; 2007 Jan; 401(1):143-53. PubMed ID: 16939419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase.
    Otoikhian A; Barry AN; Mayfield M; Nilges M; Huang Y; Lutsenko S; Blackburn NJ
    J Am Chem Soc; 2012 Jun; 134(25):10458-68. PubMed ID: 22577880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enthalpy-entropy compensation at play in human copper ion transfer.
    Niemiec MS; Dingeldein AP; Wittung-Stafshede P
    Sci Rep; 2015 May; 5():10518. PubMed ID: 26013029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Structure and function of ATP7A and ATP7B proteins--Cu-transporting ATPases].
    Lenartowicz M; Krzeptowski W
    Postepy Biochem; 2010; 56(3):317-27. PubMed ID: 21117320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B.
    Tadini-Buoninsegni F; Smeazzetto S
    IUBMB Life; 2017 Apr; 69(4):218-225. PubMed ID: 28164426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Function and regulation of human copper-transporting ATPases.
    Lutsenko S; Barnes NL; Bartee MY; Dmitriev OY
    Physiol Rev; 2007 Jul; 87(3):1011-46. PubMed ID: 17615395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting P-type ATPases, ATP7A and ATP7B.
    Singleton WCJ; McInnes KT; Cater MA; Winnall WR; McKirdy R; Yu Y; Taylor PE; Ke BX; Richardson DR; Mercer JFB; La Fontaine S
    J Biol Chem; 2010 Aug; 285(35):27111-27121. PubMed ID: 20566629
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutation in the CPC motif-containing 6th transmembrane domain affects intracellular localization, trafficking and copper transport efficiency of ATP7A protein in mosaic mutant mice--an animal model of Menkes disease.
    Lenartowicz M; Grzmil P; Shoukier M; Starzyński R; Marciniak M; Lipiński P
    Metallomics; 2012 Feb; 4(2):197-204. PubMed ID: 22089129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding of copper(I) by the Wilson disease protein and its copper chaperone.
    Wernimont AK; Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2004 Mar; 279(13):12269-76. PubMed ID: 14709553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformations of the apo-, substrate-bound and phosphate-bound ATP-binding domain of the Cu(II) ATPase CopB illustrate coupling of domain movement to the catalytic cycle.
    Jayakanthan S; Roberts SA; Weichsel A; Argüello JM; McEvoy MM
    Biosci Rep; 2012 Oct; 32(5):443-53. PubMed ID: 22663904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and functional insights of Wilson disease copper-transporting ATPase.
    Fatemi N; Sarkar B
    J Bioenerg Biomembr; 2002 Oct; 34(5):339-49. PubMed ID: 12539961
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
    Hatori Y; Lewis D; Toyoshima C; Inesi G
    Biochemistry; 2009 Jun; 48(22):4871-80. PubMed ID: 19364131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural biology: a platform for copper pumps.
    Robinson NJ
    Nature; 2011 Jul; 475(7354):41-2. PubMed ID: 21734698
    [No Abstract]   [Full Text] [Related]  

  • 60. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases.
    Sautron E; Giustini C; Dang T; Moyet L; Salvi D; Crouzy S; Rolland N; Catty P; Seigneurin-Berny D
    J Biol Chem; 2016 Sep; 291(38):20136-48. PubMed ID: 27493208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.