These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25956927)
1. In Vivo Mechanical Characterization of the Distraction Callus During Bone Consolidation. Mora-Macías J; Reina-Romo E; López-Pliego M; Giráldez-Sánchez MA; Domínguez J Ann Biomed Eng; 2015 Nov; 43(11):2663-74. PubMed ID: 25956927 [TBL] [Abstract][Full Text] [Related]
2. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Mora-Macías J; Reina-Romo E; Domínguez J Med Eng Phys; 2015 Oct; 37(10):969-78. PubMed ID: 26320818 [TBL] [Abstract][Full Text] [Related]
3. Mechanobiology of Bone Consolidation During Distraction Osteogenesis: Bone Lengthening Vs. Bone Transport. Blázquez-Carmona P; Mora-Macías J; Morgaz J; Fernández-Sarmiento JA; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Apr; 49(4):1209-1221. PubMed ID: 33111968 [TBL] [Abstract][Full Text] [Related]
4. Comparison of methods for assigning the material properties of the distraction callus in computational models. Mora-Macías J; Giráldez-Sánchez MÁ; López M; Domínguez J; Reina-Romo ME Int J Numer Method Biomed Eng; 2019 Sep; 35(9):e3227. PubMed ID: 31197959 [TBL] [Abstract][Full Text] [Related]
5. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. Mora-Macías J; Reina-Romo E; Domínguez J J Mech Behav Biomed Mater; 2016 Aug; 61():419-430. PubMed ID: 27111628 [TBL] [Abstract][Full Text] [Related]
6. Comparison of various types of stiffness as predictors of the load-bearing capacity of callus tissue. Floerkemeier T; Hurschler C; Witte F; Wellmann M; Thorey F; Vogt U; Windhagen H J Bone Joint Surg Br; 2005 Dec; 87(12):1694-9. PubMed ID: 16326889 [TBL] [Abstract][Full Text] [Related]
7. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study. Wehner T; Steiner M; Ignatius A; Claes L PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060 [TBL] [Abstract][Full Text] [Related]
8. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. Claes L; Meyers N; Schülke J; Reitmaier S; Klose S; Ignatius A PLoS One; 2018; 13(8):e0202702. PubMed ID: 30138362 [TBL] [Abstract][Full Text] [Related]
9. Stiffness of callus tissue during distraction osteogenesis. Floerkemeier T; Thorey F; Hurschler C; Wellmann M; Witte F; Windhagen H Orthop Traumatol Surg Res; 2010 Apr; 96(2):155-60. PubMed ID: 20417914 [TBL] [Abstract][Full Text] [Related]
11. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator. Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578 [TBL] [Abstract][Full Text] [Related]
12. Mechanical Influence of Surrounding Soft Tissue on Bone Regeneration Processes: A Bone Lengthening Study. Blázquez-Carmona P; Mora-Macías J; Sanz-Herrera JA; Morgaz J; Navarrete-Calvo R; Domínguez J; Reina-Romo E Ann Biomed Eng; 2021 Feb; 49(2):642-652. PubMed ID: 32808118 [TBL] [Abstract][Full Text] [Related]
13. Novel approach to estimate distraction forces in distraction osteogenesis and application in the human lower leg. Bachmeier AT; Euler E; Bader R; Böcker W; Thaller PH J Mech Behav Biomed Mater; 2022 Apr; 128():105133. PubMed ID: 35217291 [TBL] [Abstract][Full Text] [Related]
14. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. Schuelke J; Meyers N; Reitmaier S; Klose S; Ignatius A; Claes L PLoS One; 2018; 13(4):e0195466. PubMed ID: 29624608 [TBL] [Abstract][Full Text] [Related]
15. Histological evolution of the regenerate during bone transport: an experimental study in sheep. López-Pliego EM; Giráldez-Sánchez MÁ; Mora-Macías J; Reina-Romo E; Domínguez J Injury; 2016 Sep; 47 Suppl 3():S7-S14. PubMed ID: 27692111 [TBL] [Abstract][Full Text] [Related]
16. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. Mora-Macías J; Pajares A; Miranda P; Domínguez J; Reina-Romo E J Mech Behav Biomed Mater; 2017 Oct; 74():236-244. PubMed ID: 28623826 [TBL] [Abstract][Full Text] [Related]
18. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio. Song SH; Agashe M; Kim TY; Sinha S; Park YE; Kim SJ; Hong JH; Song SY; Song HR J Pediatr Orthop B; 2012 Mar; 21(2):137-45. PubMed ID: 22170218 [TBL] [Abstract][Full Text] [Related]
19. The vascular supply to bone in distraction osteoneogenesis: an experimental study. Mosheiff R; Cordey J; Rahn BA; Perren SM; Stein H J Bone Joint Surg Br; 1996 May; 78(3):497-8. PubMed ID: 8636197 [No Abstract] [Full Text] [Related]
20. The initial phase of fracture healing is specifically sensitive to mechanical conditions. Klein P; Schell H; Streitparth F; Heller M; Kassi JP; Kandziora F; Bragulla H; Haas NP; Duda GN J Orthop Res; 2003 Jul; 21(4):662-9. PubMed ID: 12798066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]