BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 25957076)

  • 1. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.
    Liu W; Cheng S; Sun D; Huang H; Chen J; Cen K
    Biosens Bioelectron; 2015 Oct; 72():44-50. PubMed ID: 25957076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S; Liu W; Guo J; Sun D; Pan B; Ye Y; Ding W; Huang H; Li F
    Biosens Bioelectron; 2014 Jun; 56():264-70. PubMed ID: 24514078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7862-6. PubMed ID: 23902951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X; Tokash JC; Zhang F; Liang P; Huang X; Logan BE
    Environ Sci Technol; 2013 Feb; 47(4):2085-91. PubMed ID: 23360098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells.
    Zhang X; He W; Zhang R; Wang Q; Liang P; Huang X; Logan BE; Fellinger TP
    ChemSusChem; 2016 Oct; 9(19):2788-2795. PubMed ID: 27509893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyaniline/β-MnO
    Zhou X; Xu Y; Mei X; Du N; Jv R; Hu Z; Chen S
    Chemosphere; 2018 May; 198():482-491. PubMed ID: 29427950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells.
    Wang H; Fu B; Xi J; Hu HY; Liang P; Huang X; Zhang X
    Sci Total Environ; 2019 Oct; 687():287-296. PubMed ID: 31207518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air-cathode preparation with activated carbon as catalyst, PTFE as binder and nickel foam as current collector for microbial fuel cells.
    Cheng S; Wu J
    Bioelectrochemistry; 2013 Aug; 92():22-6. PubMed ID: 23567144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black.
    Zhang X; Xia X; Ivanov I; Huang X; Logan BE
    Environ Sci Technol; 2014; 48(3):2075-81. PubMed ID: 24422458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode Modification and Optimization in Air-Cathode Single-Chamber Microbial Fuel Cells.
    Wang Y; Wu J; Yang S; Li H; Li X
    Int J Environ Res Public Health; 2018 Jun; 15(7):. PubMed ID: 29954125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.
    Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F
    Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells.
    Wang X; Feng Y; Liu J; Shi X; Lee H; Li N; Ren N
    Biosens Bioelectron; 2010 Oct; 26(2):946-8. PubMed ID: 20634052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.
    Wang X; Gao N; Zhou Q; Dong H; Yu H; Feng Y
    Bioresour Technol; 2013 Sep; 144():632-6. PubMed ID: 23890977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.