BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25957252)

  • 1. Identification of genes involved in the phosphate metabolism in Cryptococcus neoformans.
    Toh-e A; Ohkusu M; Li HM; Shimizu K; Takahashi-Nakaguchi A; Gonoi T; Kawamoto S; Kanesaki Y; Yoshikawa H; Nishizawa M
    Fungal Genet Biol; 2015 Jul; 80():19-30. PubMed ID: 25957252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PHO signaling pathway directs lipid remodeling in Cryptococcus neoformans via DGTS synthase to recycle phosphate during phosphate deficiency.
    Lev S; Rupasinghe T; Desmarini D; Kaufman-Francis K; Sorrell TC; Roessner U; Djordjevic JT
    PLoS One; 2019; 14(2):e0212651. PubMed ID: 30789965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysregulating PHO Signaling via the CDK Machinery Differentially Impacts Energy Metabolism, Calcineurin Signaling, and Virulence in Cryptococcus neoformans.
    Bowring BG; Sethiya P; Desmarini D; Lev S; Tran Le L; Bahn YS; Lee SH; Toh-E A; Proschogo N; Savage T; Djordjevic JT
    mBio; 2023 Apr; 14(2):e0355122. PubMed ID: 37017534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans.
    Kingsbury JM; Yang Z; Ganous TM; Cox GM; McCusker JH
    Eukaryot Cell; 2004 Jun; 3(3):752-63. PubMed ID: 15189996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics of Cryptococcus neoformans.
    Hull CM; Heitman J
    Annu Rev Genet; 2002; 36():557-615. PubMed ID: 12429703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans.
    Alspaugh JA; Perfect JR; Heitman J
    Fungal Genet Biol; 1998 Oct; 25(1):1-14. PubMed ID: 9806801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IP
    Desmarini D; Lev S; Furkert D; Crossett B; Saiardi A; Kaufman-Francis K; Li C; Sorrell TC; Wilkinson-White L; Matthews J; Fiedler D; Djordjevic JT
    mBio; 2020 Oct; 11(5):. PubMed ID: 33082258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation.
    Huang S; O'Shea EK
    Genetics; 2005 Apr; 169(4):1859-71. PubMed ID: 15695358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel temperature-regulated genes in the human pathogen Cryptococcus neoformans using representational difference analysis.
    Rosa e Silva LK; Staats CC; Goulart LS; Morello LG; Pelegrinelli Fungaro MH; Schrank A; Vainstein MH
    Res Microbiol; 2008 Apr; 159(3):221-9. PubMed ID: 18280708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptococcus neoformans: virulence and host defences.
    Perfect JR; Wong B; Chang YC; Kwon-Chung KJ; Williamson PR
    Med Mycol; 1998; 36 Suppl 1():79-86. PubMed ID: 9988495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling phosphate starvation.
    Lenburg ME; O'Shea EK
    Trends Biochem Sci; 1996 Oct; 21(10):383-7. PubMed ID: 8918192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a CDC28 homologue from Cryptococcus neoformans that is able to complement cdc28 temperature-sensitive mutants of Saccharomyces cerevisiae.
    Takeo K; Ogura Y; Virtudazo E; Raclavsky V; Kawamoto S
    FEMS Yeast Res; 2004 May; 4(7):737-44. PubMed ID: 15093777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.
    Jung KW; Yang DH; Kim MK; Seo HS; Lim S; Bahn YS
    mBio; 2016 Nov; 7(6):. PubMed ID: 27899501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans.
    Kmetzsch L; Staats CC; Simon E; Fonseca FL; Oliveira DL; Joffe LS; Rodrigues J; Lourenço RF; Gomes SL; Nimrichter L; Rodrigues ML; Schrank A; Vainstein MH
    Fungal Genet Biol; 2011 Feb; 48(2):192-9. PubMed ID: 20673806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the model pathogenic fungus Cryptococcus neoformans.
    Idnurm A; Bahn YS; Nielsen K; Lin X; Fraser JA; Heitman J
    Nat Rev Microbiol; 2005 Oct; 3(10):753-64. PubMed ID: 16132036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic genetic screen for genes involved in sensing inorganic phosphate availability in Saccharomyces cerevisiae.
    Choi J; Rajagopal A; Xu YF; Rabinowitz JD; O'Shea EK
    PLoS One; 2017; 12(5):e0176085. PubMed ID: 28520786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Amino Acid Permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival.
    Fernandes JD; Martho K; Tofik V; Vallim MA; Pascon RC
    PLoS One; 2015; 10(7):e0132369. PubMed ID: 26162077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a Cryptococcus neoformans gene that directs expression of the cryptic Saccharomyces cerevisiae mannitol dehydrogenase gene.
    Perfect JR; Rude TH; Wong B; Flynn T; Chaturvedi V; Niehaus W
    J Bacteriol; 1996 Sep; 178(17):5257-62. PubMed ID: 8752346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nuclear-encoded intein in the fungal pathogen Cryptococcus neoformans.
    Butler MI; Goodwin TJ; Poulter RT
    Yeast; 2001 Nov; 18(15):1365-70. PubMed ID: 11746598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a Zds-like gene ZDS3 as a new mediator of stress resistance, capsule formation and virulence of the human pathogenic yeast Cryptococcus neoformans.
    Li Z; Sun Z; Li D; Pan J; Zhu X
    FEMS Yeast Res; 2011 Nov; 11(7):529-39. PubMed ID: 21726407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.