These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25957261)

  • 1. Finite element implementation of a multiscale model of the human lens capsule.
    Burd HJ; Regueiro RA
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1363-78. PubMed ID: 25957261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structural constitutive model for the human lens capsule.
    Burd HJ
    Biomech Model Mechanobiol; 2009 Jun; 8(3):217-31. PubMed ID: 18622755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.
    Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A
    Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.
    Evans SL
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):319-32. PubMed ID: 19199169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element model of stresses in the anterior lens capsule of the eye.
    David G; Humphrey JD
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):237-43. PubMed ID: 17558651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional mechanical properties and stress analysis of the human anterior lens capsule.
    Pedrigi RM; David G; Dziezyc J; Humphrey JD
    Vision Res; 2007 Jun; 47(13):1781-9. PubMed ID: 17467027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional multiaxial mechanical properties of the porcine anterior lens capsule.
    David G; Pedrigi RM; Heistand MR; Humphrey JD
    J Biomech Eng; 2007 Feb; 129(1):97-104. PubMed ID: 17227103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accommodation of the human lens capsule using a finite element model based on nonlinear regionally anisotropic biomembranes.
    David G; Pedrigi RM; Humphrey JD
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):302-307. PubMed ID: 27609339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of region and sex on the mechanical properties of the glenohumeral capsule during uniaxial extension.
    Voycheck CA; Rainis EJ; McMahon PJ; Weiss JA; Debski RE
    J Appl Physiol (1985); 2010 Jun; 108(6):1711-8. PubMed ID: 20395545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods.
    Fu YB; Chui CK; Teo CL
    J Mech Behav Biomed Mater; 2013 Apr; 20():105-12. PubMed ID: 23455167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elasticity of the porcine lens capsule as measured by osmotic swelling.
    Powell TA; Amini R; Oltean A; Barnett VA; Dorfman KD; Segal Y; Barocas VH
    J Biomech Eng; 2010 Sep; 132(9):091008. PubMed ID: 20815642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A visco-hyperelastic constitutive model for human spine ligaments.
    Jiang Y; Wang Y; Peng X
    Cell Biochem Biophys; 2015 Mar; 71(2):1147-56. PubMed ID: 25347987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model.
    Badel P; Avril S; Lessner S; Sutton M
    Comput Methods Biomech Biomed Engin; 2012; 15(1):37-48. PubMed ID: 21749226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.