These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25957311)

  • 1. Experimental evolution can unravel the complex causes of natural selection in clinical infections.
    Brockhurst MA
    Microbiology (Reading); 2015 Jun; 161(6):1175-9. PubMed ID: 25957311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical significance of microbial infection and adaptation in cystic fibrosis.
    Hauser AR; Jain M; Bar-Meir M; McColley SA
    Clin Microbiol Rev; 2011 Jan; 24(1):29-70. PubMed ID: 21233507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.
    La Rosa R; Johansen HK; Molin S
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.
    Colautti RI; Lau JA
    Mol Ecol; 2015 May; 24(9):1999-2017. PubMed ID: 25891044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung.
    Hogardt M; Heesemann J
    Int J Med Microbiol; 2010 Dec; 300(8):557-62. PubMed ID: 20943439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary epidemiology and the dynamics of adaptation.
    Gandon S; Day T
    Evolution; 2009 Apr; 63(4):826-38. PubMed ID: 19154387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung.
    Diaz Caballero J; Clark ST; Coburn B; Zhang Y; Wang PW; Donaldson SL; Tullis DE; Yau YC; Waters VJ; Hwang DM; Guttman DS
    mBio; 2015 Sep; 6(5):e00981-15. PubMed ID: 26330513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution in a Community Context: towards Understanding the Causes and Consequences of Adaptive Evolution in the Human Gut Microbiota over Short Time Scales.
    Scanlan PD
    mSystems; 2021 Aug; 6(4):e0083221. PubMed ID: 34427532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial ecology and adaptation in cystic fibrosis airways.
    Yang L; Jelsbak L; Molin S
    Environ Microbiol; 2011 Jul; 13(7):1682-9. PubMed ID: 21429065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary constraint and ecological consequences.
    Futuyma DJ
    Evolution; 2010 Jul; 64(7):1865-84. PubMed ID: 20659157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections.
    Winstanley C; O'Brien S; Brockhurst MA
    Trends Microbiol; 2016 May; 24(5):327-337. PubMed ID: 26946977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bigger Is Fitter? Quantitative Genetic Decomposition of Selection Reveals an Adaptive Evolutionary Decline of Body Mass in a Wild Rodent Population.
    Bonnet T; Wandeler P; Camenisch G; Postma E
    PLoS Biol; 2017 Jan; 15(1):e1002592. PubMed ID: 28125583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for microbial local adaptation in nature.
    Kraemer SA; Boynton PJ
    Mol Ecol; 2017 Apr; 26(7):1860-1876. PubMed ID: 27997057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World.
    Reznick D
    J Hered; 2016 Jan; 107(1):3-14. PubMed ID: 26424874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-stressor selection alters eco-evolutionary dynamics in experimental communities.
    Hiltunen T; Cairns J; Frickel J; Jalasvuori M; Laakso J; Kaitala V; Künzel S; Karakoc E; Becks L
    Nat Ecol Evol; 2018 Dec; 2(12):1974-1981. PubMed ID: 30455439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fitness effects of mutations in bacteria.
    Gordo I; Perfeito L; Sousa A
    J Mol Microbiol Biotechnol; 2011; 21(1-2):20-35. PubMed ID: 22248540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial host interactions in cystic fibrosis.
    Callaghan M; McClean S
    Curr Opin Microbiol; 2012 Feb; 15(1):71-7. PubMed ID: 22137884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients.
    Marvig RL; Sommer LM; Jelsbak L; Molin S; Johansen HK
    Future Microbiol; 2015; 10(4):599-611. PubMed ID: 25865196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Microbiome in Cystic Fibrosis.
    Huang YJ; LiPuma JJ
    Clin Chest Med; 2016 Mar; 37(1):59-67. PubMed ID: 26857768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change and evolution: disentangling environmental and genetic responses.
    Gienapp P; Teplitsky C; Alho JS; Mills JA; Merilä J
    Mol Ecol; 2008 Jan; 17(1):167-78. PubMed ID: 18173499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.