These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1106 related articles for article (PubMed ID: 25957350)

  • 61. Survey of protein-DNA interactions in Aspergillus oryzae on a genomic scale.
    Wang C; Lv Y; Wang B; Yin C; Lin Y; Pan L
    Nucleic Acids Res; 2015 May; 43(9):4429-46. PubMed ID: 25883143
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Genome-wide in silico prediction of gene expression.
    McLeay RC; Lesluyes T; Cuellar Partida G; Bailey TL
    Bioinformatics; 2012 Nov; 28(21):2789-96. PubMed ID: 22954627
    [TBL] [Abstract][Full Text] [Related]  

  • 64. REUNION: transcription factor binding prediction and regulatory association inference from single-cell multi-omics data.
    Yang Y; Pe'er D
    Bioinformatics; 2024 Jun; 40(Suppl 1):i567-i575. PubMed ID: 38940155
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differential chromatin profiles partially determine transcription factor binding.
    Chen R; Gifford DK
    PLoS One; 2017; 12(7):e0179411. PubMed ID: 28704389
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluating the impact of single nucleotide variants on transcription factor binding.
    Shi W; Fornes O; Mathelier A; Wasserman WW
    Nucleic Acids Res; 2016 Dec; 44(21):10106-10116. PubMed ID: 27492288
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Global analysis of transcription factor-binding sites in yeast using ChIP-Seq.
    Lefrançois P; Gallagher JE; Snyder M
    Methods Mol Biol; 2014; 1205():231-55. PubMed ID: 25213249
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.
    Tsai ZT; Shiu SH; Tsai HK
    PLoS Comput Biol; 2015 Aug; 11(8):e1004418. PubMed ID: 26291518
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

  • 72. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.
    Setty M; Leslie CS
    PLoS Comput Biol; 2015 May; 11(5):e1004271. PubMed ID: 26016777
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transcription Factor Binding Site Mapping Using ChIP-Seq.
    Jaini S; Lyubetskaya A; Gomes A; Peterson M; Tae Park S; Raman S; Schoolnik G; Galagan J
    Microbiol Spectr; 2014 Apr; 2(2):. PubMed ID: 26105820
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Discriminative motif analysis of high-throughput dataset.
    Yao Z; Macquarrie KL; Fong AP; Tapscott SJ; Ruzzo WL; Gentleman RC
    Bioinformatics; 2014 Mar; 30(6):775-83. PubMed ID: 24162561
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of transcription factor binding sites using ATAC-seq.
    Li Z; Schulz MH; Look T; Begemann M; Zenke M; Costa IG
    Genome Biol; 2019 Feb; 20(1):45. PubMed ID: 30808370
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 78. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The next generation of transcription factor binding site prediction.
    Mathelier A; Wasserman WW
    PLoS Comput Biol; 2013; 9(9):e1003214. PubMed ID: 24039567
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z; Hofmeister BT; Vollmers C; DuBois RM; Schmitz RJ
    Nucleic Acids Res; 2017 Apr; 45(6):e41. PubMed ID: 27903897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.