BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 25957351)

  • 1. Using combined evidence from replicates to evaluate ChIP-seq peaks.
    Jalili V; Matteucci M; Masseroli M; Morelli MJ
    Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel statistical method for quantitative comparison of multiple ChIP-seq datasets.
    Chen L; Wang C; Qin ZS; Wu H
    Bioinformatics; 2015 Jun; 31(12):1889-96. PubMed ID: 25682068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
    Bailey SD; Virtanen C; Haibe-Kains B; Lupien M
    Bioinformatics; 2015 Sep; 31(18):3057-9. PubMed ID: 25995231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MuSERA: Multiple Sample Enriched Region Assessment.
    Jalili V; Matteucci M; Morelli MJ; Masseroli M
    Brief Bioinform; 2017 May; 18(3):367-381. PubMed ID: 27013647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of C2H2-ZF binding preferences from ChIP-seq data using RCADE.
    Najafabadi HS; Albu M; Hughes TR
    Bioinformatics; 2015 Sep; 31(17):2879-81. PubMed ID: 25953800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and robust assessment of ChIP-seq read distribution using a strand-shift profile.
    Nakato R; Shirahige K
    Bioinformatics; 2018 Jul; 34(14):2356-2363. PubMed ID: 29528371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RECAP reveals the true statistical significance of ChIP-seq peak calls.
    Chitpin JG; Awdeh A; Perkins TJ
    Bioinformatics; 2019 Oct; 35(19):3592-3598. PubMed ID: 30824903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Myc Chromatin Binding by Calibrated ChIP-Seq Approach.
    Cameron DP; Kuzin V; Baranello L
    Methods Mol Biol; 2021; 2318():161-185. PubMed ID: 34019290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks.
    Hansen P; Hecht J; Ibrahim DM; Krannich A; Truss M; Robinson PN
    Genome Res; 2015 Sep; 25(9):1391-400. PubMed ID: 26163319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RSAT::Plants: Motif Discovery in ChIP-Seq Peaks of Plant Genomes.
    Castro-Mondragon JA; Rioualen C; Contreras-Moreira B; van Helden J
    Methods Mol Biol; 2016; 1482():297-322. PubMed ID: 27557775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape.
    Fagnocchi L; Zippo A
    Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks.
    Nix DA; Courdy SJ; Boucher KM
    BMC Bioinformatics; 2008 Dec; 9():523. PubMed ID: 19061503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DiffChIPL: a differential peak analysis method for high-throughput sequencing data with biological replicates based on limma.
    Chen Y; Chen S; Lei EP
    Bioinformatics; 2022 Sep; 38(17):4062-4069. PubMed ID: 35809062
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Zeng J; Li G
    Int J Biol Sci; 2018; 14(12):1724-1731. PubMed ID: 30416387
    [No Abstract]   [Full Text] [Related]  

  • 20. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.
    Mitra S; Biswas A; Narlikar L
    PLoS Comput Biol; 2018 Apr; 14(4):e1006090. PubMed ID: 29684008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.