These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 25957839)
1. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties. Jia J; Siddiq AR; Kennedy AR J Mech Behav Biomed Mater; 2015 Aug; 48():229-240. PubMed ID: 25957839 [TBL] [Abstract][Full Text] [Related]
2. Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Siddiq AR; Kennedy AR Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():180-8. PubMed ID: 25492187 [TBL] [Abstract][Full Text] [Related]
3. Formability and mechanical properties of porous titanium produced by a moldless process. Naito Y; Bae J; Tomotake Y; Hamada K; Asaoka K; Ichikawa T J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):1090-4. PubMed ID: 23559484 [TBL] [Abstract][Full Text] [Related]
4. Effects of pore size and porosity on cytocompatibility and osteogenic differentiation of porous titanium. Yao YT; Yang Y; Ye Q; Cao SS; Zhang XP; Zhao K; Jian Y J Mater Sci Mater Med; 2021 Jun; 32(6):72. PubMed ID: 34125310 [TBL] [Abstract][Full Text] [Related]
5. Biocompatible porous titanium scaffolds produced using a novel space holder technique. Chen Y; Frith JE; Dehghan-Manshadi A; Kent D; Bermingham M; Dargusch M J Biomed Mater Res B Appl Biomater; 2018 Nov; 106(8):2796-2806. PubMed ID: 29405558 [TBL] [Abstract][Full Text] [Related]
6. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres. Zou C; Zhang E; Li M; Zeng S J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525 [TBL] [Abstract][Full Text] [Related]
7. The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Torres-Sanchez C; Al Mushref FRA; Norrito M; Yendall K; Liu Y; Conway PP Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():219-228. PubMed ID: 28532024 [TBL] [Abstract][Full Text] [Related]
8. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. Li F; Li J; Xu G; Liu G; Kou H; Zhou L J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351 [TBL] [Abstract][Full Text] [Related]
9. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Torres Y; Lascano S; Bris J; Pavón J; Rodriguez JA Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():148-55. PubMed ID: 24582234 [TBL] [Abstract][Full Text] [Related]
10. Flexural and compressive mechanical behaviors of the porous titanium materials with entangled wire structure at different sintering conditions for load-bearing biomedical applications. He G; Liu P; Tan Q; Jiang G J Mech Behav Biomed Mater; 2013 Dec; 28():309-19. PubMed ID: 24021173 [TBL] [Abstract][Full Text] [Related]
11. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method. Rao X; Chu CL; Zheng YY J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322 [TBL] [Abstract][Full Text] [Related]
12. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
13. Different models for simulation of mechanical behaviour of porous materials. Muñoz S; Castillo SM; Torres Y J Mech Behav Biomed Mater; 2018 Apr; 80():88-96. PubMed ID: 29414480 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related]
15. Porous titanium materials with entangled wire structure for load-bearing biomedical applications. He G; Liu P; Tan Q J Mech Behav Biomed Mater; 2012 Jan; 5(1):16-31. PubMed ID: 22100076 [TBL] [Abstract][Full Text] [Related]
16. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications. Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847 [TBL] [Abstract][Full Text] [Related]
17. Bioactive macroporous titanium implants highly interconnected. Caparrós C; Ortiz-Hernandez M; Molmeneu M; Punset M; Calero JA; Aparicio C; Fernández-Fairén M; Perez R; Gil FJ J Mater Sci Mater Med; 2016 Oct; 27(10):151. PubMed ID: 27582071 [TBL] [Abstract][Full Text] [Related]
18. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Li X; Wang CT; Zhang WG; Li YC Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194 [TBL] [Abstract][Full Text] [Related]
19. Manufacturing of graded titanium scaffolds using a novel space holder technique. Chen Y; Kent D; Bermingham M; Dehghan-Manshadi A; Wang G; Wen C; Dargusch M Bioact Mater; 2017 Dec; 2(4):248-252. PubMed ID: 29744433 [TBL] [Abstract][Full Text] [Related]
20. Cancellous bone from porous Ti6Al4V by multiple coating technique. Li JP; Li SH; Van Blitterswijk CA; de Groot K J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]