These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 25957865)

  • 21. Phenological response to climate change in China: a meta-analysis.
    Ge Q; Wang H; Rutishauser T; Dai J
    Glob Chang Biol; 2015 Jan; 21(1):265-74. PubMed ID: 24895088
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of climate change on paddy rice yield in a temperate climate.
    Kim HY; Ko J; Kang S; Tenhunen J
    Glob Chang Biol; 2013 Feb; 19(2):548-62. PubMed ID: 23504792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.
    Park CK; Ho CH; Jeong SJ; Lee EJ; Kim J
    PLoS One; 2017; 12(3):e0174390. PubMed ID: 28346534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detecting nonlinear response of spring phenology to climate change by Bayesian analysis.
    Pope KS; Dose V; Da Silva D; Brown PH; Leslie CA; Dejong TM
    Glob Chang Biol; 2013 May; 19(5):1518-25. PubMed ID: 23505006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projection of future temperature-related mortality due to climate and demographic changes.
    Lee JY; Kim H
    Environ Int; 2016 Sep; 94():489-494. PubMed ID: 27316627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests.
    Yarasi B; Sadumpati V; Immanni CP; Vudem DR; Khareedu VR
    BMC Plant Biol; 2008 Oct; 8():102. PubMed ID: 18854007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating plant-insect interactions under climate change with limited data.
    Tamura Y; Osawa T; Tabuchi K; Yamasaki K; Niiyama T; Sudo S; Ishigooka Y; Yoshioka A; Takada MB
    Sci Rep; 2022 Jul; 12(1):10554. PubMed ID: 35794117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved climate risk simulations for rice in arid environments.
    van Oort PA; de Vries ME; Yoshida H; Saito K
    PLoS One; 2015; 10(3):e0118114. PubMed ID: 25774909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature.
    Wan G; Dang Z; Wu G; Parajulee MN; Ge F; Chen F
    Pest Manag Sci; 2014 May; 70(5):734-42. PubMed ID: 24136625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem.
    Asch RG
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):E4065-74. PubMed ID: 26159416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early spring warming may hasten leaf emergence in Erythronium americanum.
    Tessier JT
    Am J Bot; 2019 Oct; 106(10):1392-1396. PubMed ID: 31553817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].
    Huang ZG; Wang XL; Xiao Y; Yang F; Wang CX
    Ying Yong Sheng Tai Xue Bao; 2015 Jan; 26(1):260-8. PubMed ID: 25985678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rice morphogenesis and plant architecture: measurement, specification and the reconstruction of structural development by 3D architectural modelling.
    Watanabe T; Hanan JS; Room PM; Hasegawa T; Nakagawa H; Takahashi W
    Ann Bot; 2005 Jun; 95(7):1131-43. PubMed ID: 15820987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA.
    Wolfe DW; Schwartz MD; Lakso AN; Otsuki Y; Pool RM; Shaulis NJ
    Int J Biometeorol; 2005 May; 49(5):303-9. PubMed ID: 15592880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.