These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25957936)

  • 1. Layer modeling of zinc removal from metallic mixture of waste printed circuit boards by vacuum distillation.
    Gao Y; Li X; Ding H
    Waste Manag; 2015 Aug; 42():188-95. PubMed ID: 25957936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.
    Li X; Gao Y; Ding H
    Chemosphere; 2013 Oct; 93(4):677-82. PubMed ID: 23830119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of additives on migration and transformation of gaseous pollutants in the vacuum pyrolysis process of waste printed circuit boards.
    Xie Y; Sun S; Liu J; Lin W; Chen N; Ye M
    Waste Manag Res; 2017 Feb; 35(2):190-199. PubMed ID: 27539190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.
    Zhan L; Xu Z
    Environ Sci Technol; 2008 Oct; 42(20):7676-81. PubMed ID: 18983092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
    Zeng X; Li J; Xie H; Liu L
    Chemosphere; 2013 Oct; 93(7):1288-94. PubMed ID: 23910241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments and perspective of the spent waste printed circuit boards.
    Xu Y; Liu J
    Waste Manag Res; 2015 May; 33(5):392-400. PubMed ID: 25827846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid.
    Huang J; Chen M; Chen H; Chen S; Sun Q
    Waste Manag; 2014 Feb; 34(2):483-8. PubMed ID: 24246577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.
    Wang R; Xu Z
    Waste Manag; 2014 Aug; 34(8):1455-69. PubMed ID: 24726822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative approach to predict technology evolution for the desoldering of printed circuit boards: A perspective from China and America.
    Wang C; Zhao W; Wang J; Chen L; Luo CJ
    Waste Manag Res; 2016 Jun; 34(6):491-501. PubMed ID: 27067430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of metallic concentrations from waste printed circuit boards via reverse floatation.
    He J; Duan C
    Waste Manag; 2017 Feb; 60():618-628. PubMed ID: 27866997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.
    Flores-Campos R; Estrada-Ruiz RH; Velarde-Sánchez EJ
    Waste Manag; 2017 Nov; 69():400-406. PubMed ID: 28888804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triboelectric separation technology for removing inorganics from non-metallic fraction of waste printed circuit boards: Influence of size fraction and process optimization.
    Zhang G; Wang H; He Y; Yang X; Peng Z; Zhang T; Wang S
    Waste Manag; 2017 Feb; 60():42-49. PubMed ID: 27530083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of the heavy fraction of pyrolysis oil derived from waste printed circuit boards in modifying asphalt.
    Yang F; Sun S; Zhong S; Li S; Wang Y; Wu J
    J Environ Manage; 2013 Sep; 126():1-6. PubMed ID: 23644664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones.
    Shah MB; Tipre DR; Dave SR
    Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quadratic nonlinear models for optimizing electrostatic separation of crushed waste printed circuit boards using response surface methodology.
    Qin Y; Wu J; Zhou Q; Xu Z
    J Hazard Mater; 2009 Aug; 167(1-3):1038-43. PubMed ID: 19250745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.
    Xiu FR; Qi Y; Zhang FS
    Waste Manag; 2013 May; 33(5):1251-7. PubMed ID: 23474342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new technology for recycling solder from waste printed circuit boards using ionic liquid.
    Zhu P; Chen Y; Wang Ly; Zhou M
    Waste Manag Res; 2012 Nov; 30(11):1222-6. PubMed ID: 22951573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology.
    Wong SL; Ngadi N; Amin NA; Abdullah TA; Inuwa IM
    Environ Technol; 2016; 37(2):245-54. PubMed ID: 26150081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic simulation and prediction of pyrolysis process for non-metallic fraction of waste printed circuit boards by discrete distributed activation energy model compared with isoconversional method.
    Chen Y; Yang J; Zhang Y; Liu K; Liang S; Xu X; Hu J; Yao H; Xiao B
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3636-3646. PubMed ID: 29164464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An environmentally friendly technology of disassembling electronic components from waste printed circuit boards.
    Wang J; Guo J; Xu Z
    Waste Manag; 2016 Jul; 53():218-24. PubMed ID: 27026495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.