These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25958082)
41. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Wang G; Zhang S; Ma X; Wang Y; Kong F; Meng Q Physiol Plant; 2016 Sep; 158(1):45-64. PubMed ID: 26991441 [TBL] [Abstract][Full Text] [Related]
42. The impact of different plant extracts on population suppression of Helicoverpa armigera (Hub.) and tomato (Lycopersicon esculentum Mill) yield under field conditions. Ali S; Li Y; Haq IU; Abbas W; Shabbir MZ; Khan MM; Mamay M; Niaz Y; Farooq T; Skalicky M; Zuan ATK; Nasif O; Ansari MJ PLoS One; 2021; 16(12):e0260470. PubMed ID: 34852006 [TBL] [Abstract][Full Text] [Related]
43. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Bhonwong A; Stout MJ; Attajarusit J; Tantasawat P J Chem Ecol; 2009 Jan; 35(1):28-38. PubMed ID: 19050959 [TBL] [Abstract][Full Text] [Related]
44. Overexpression of a tomato carotenoid ε-hydroxylase gene alleviates sensitivity to chilling stress in transgenic tobacco. Zhou B; Deng YS; Kong FY; Li B; Meng QW Plant Physiol Biochem; 2013 Sep; 70():235-45. PubMed ID: 23796723 [TBL] [Abstract][Full Text] [Related]
45. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. Meng X; Wang JR; Wang GD; Liang XQ; Li XD; Meng QW J Plant Physiol; 2015 Mar; 175():1-8. PubMed ID: 25437348 [TBL] [Abstract][Full Text] [Related]
46. Overexpression of chloroplast-localized small molecular heat-shock protein enhances chilling tolerance in tomato plant. Wang L; Zhao CM; Wang YJ; Liu J Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Apr; 31(2):167-74. PubMed ID: 15840935 [TBL] [Abstract][Full Text] [Related]
47. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress. Wang G; Kong F; Zhang S; Meng X; Wang Y; Meng Q J Exp Bot; 2015 Jun; 66(11):3027-40. PubMed ID: 25801077 [TBL] [Abstract][Full Text] [Related]
48. Novel DnaJ Protein Facilitates Thermotolerance of Transgenic Tomatoes. Wang G; Cai G; Xu N; Zhang L; Sun X; Guan J; Meng Q Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654548 [TBL] [Abstract][Full Text] [Related]
49. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Rivero RM; Mestre TC; Mittler R; Rubio F; Garcia-Sanchez F; Martinez V Plant Cell Environ; 2014 May; 37(5):1059-73. PubMed ID: 24028172 [TBL] [Abstract][Full Text] [Related]
50. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Zhang QY; Wang LY; Kong FY; Deng YS; Li B; Meng QW Physiol Plant; 2012 Nov; 146(3):363-73. PubMed ID: 22578286 [TBL] [Abstract][Full Text] [Related]
51. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway. Ebrahimi M; Abdullah SN; Abdul Aziz M; Namasivayam P J Plant Physiol; 2016 Sep; 202():107-20. PubMed ID: 27513726 [TBL] [Abstract][Full Text] [Related]
52. Down-Regulation of Habib S; Lwin YY; Li N Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33922069 [TBL] [Abstract][Full Text] [Related]
53. Co-expression of Pennisetum glaucum vacuolar Na⁺/H⁺ antiporter and Arabidopsis H⁺-pyrophosphatase enhances salt tolerance in transgenic tomato. Bhaskaran S; Savithramma DL J Exp Bot; 2011 Nov; 62(15):5561-70. PubMed ID: 21841179 [TBL] [Abstract][Full Text] [Related]
54. Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Klay I; Pirrello J; Riahi L; Bernadac A; Cherif A; Bouzayen M; Bouzid S ScientificWorldJournal; 2014; 2014():167681. PubMed ID: 25215313 [TBL] [Abstract][Full Text] [Related]
55. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. Goel D; Singh AK; Yadav V; Babbar SB; Murata N; Bansal KC J Plant Physiol; 2011 Jul; 168(11):1286-94. PubMed ID: 21342716 [TBL] [Abstract][Full Text] [Related]
56. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
57. Transcriptional analysis and functional characterization of a gene pair encoding iron-regulated xenocin and immunity proteins of Xenorhabdus nematophila. Singh J; Banerjee N J Bacteriol; 2008 Jun; 190(11):3877-85. PubMed ID: 18375563 [TBL] [Abstract][Full Text] [Related]
58. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. Li Y; Jiang F; Niu L; Wang G; Yin J; Song X; Ottosen CO; Rosenqvist E; Mittler R; Wu Z; Zhou R Plant J; 2024 Mar; 117(6):1656-1675. PubMed ID: 38055844 [TBL] [Abstract][Full Text] [Related]
59. Ectopic expression of an EAR motif deletion mutant of SlERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato. Pan IC; Li CW; Su RC; Cheng CP; Lin CS; Chan MT Planta; 2010 Oct; 232(5):1075-86. PubMed ID: 20697739 [TBL] [Abstract][Full Text] [Related]
60. Overexpression of the Wild Soybean R2R3-MYB Transcription Factor Shen XJ; Wang YY; Zhang YX; Guo W; Jiao YQ; Zhou XA Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544851 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]