These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25958536)

  • 1. Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys.
    Kim HJ; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8405-10. PubMed ID: 25958536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique.
    Kim HJ; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese Coatings on Hydroxyapatite-Deposited Ti–29Nb–xHf Alloys After Nanomesh Formation.
    Park SY; Choe HH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2661-665. PubMed ID: 29664264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface phenomena of hydroxyapatite film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants.
    Kim EJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1679-83. PubMed ID: 23755573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials.
    Kim EJ; Kim WG; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyapatite precipitation on nanotube surfaces of Ti-35Ta-xNb alloys.
    Jo CI; Jeong YH; Brantley WA; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7581-4. PubMed ID: 25942829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenomena of nanotube nucleation and growth on new ternary titanium alloys.
    Choe HC; Jeong YH; Brantley WA
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Characteristics of Nanotube Formed Ti–25Nb–xZr Alloys.
    Byeon IS; Choe HC
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2655-660. PubMed ID: 29664261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Characteristics of Nano-Structured Silicon/Hydroxyapatite Deposition onto the Ti-Nb-Zr Alloy.
    Jeong YH; Kim JJ; Choe HC
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1783-6. PubMed ID: 27433670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrosion behavior of nanotubular oxide on the Ti-29Nb-xZr alloy.
    Kim JU; Kim BH; Lee K; Choe HC; Ko YM
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1636-9. PubMed ID: 21456255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface characteristics of HA coating and micro-pore formation on the Ti-25Nb-xHf alloys for dental materials.
    Kim SH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7745-50. PubMed ID: 25942859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials.
    Moon BH; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7428-32. PubMed ID: 22103212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of nanotube formed Ti-30Nb-7Ta alloys.
    Kim ES; Choe HC
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8427-31. PubMed ID: 25958540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotube Nucleation Phenomena of Titanium Dioxide on the Ti-6Al-4V Alloy Using Anodic Titanium Oxide Technique.
    Kim HJ; Jeong YH; Choe HC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):467-70. PubMed ID: 26328383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotube morphology and corrosion resistance of a low rigidity quaternary titanium alloy for biomedical applications.
    Saji VS; Choe HC; Ko YM; Ahn H
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4635-9. PubMed ID: 21128470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyapatite coatings on nanotubular titanium dioxide thin films prepared by radio frequency magnetron sputtering.
    Shin J; Lee K; Koh J; Son H; Kim H; Lim HP; Yun K; Oh G; Lee S; Oh H; Lee K; Hwang G; Park SW
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5807-10. PubMed ID: 23882839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications.
    Saji VS; Choe HC; Brantley WA
    Acta Biomater; 2009 Jul; 5(6):2303-10. PubMed ID: 19289307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Characterization and Biocompatibility of Hydroxyapatite Coating on Anodized TiO
    Qadir M; Li Y; Biesiekierski A; Wen C
    Langmuir; 2021 Apr; 37(16):4984-4996. PubMed ID: 33861930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of low modulus Co-Zr alloys surface modification on protein adsorption and MC3T3-E1, NIH3T3 and RAW264.7 cell behaviour.
    Krishnadath DC; Ruan W; Yang H; Liu J; Zhou X
    J Biomater Appl; 2021 Mar; 35(8):1061-1070. PubMed ID: 33135572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Particle Formation of Mn/HA on the Ti-35Ta-xNb Alloy by Electrochemical Methods.
    Jo CI; Choe HC
    J Nanosci Nanotechnol; 2015 Aug; 15(8):6120-3. PubMed ID: 26369210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.