These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25958587)

  • 1. Preparation and atomic force microscopy (AFM) characterization of DNA scaffolds as a template for protein immobilization.
    Lee HU; Kim H; Lee YC; Lee J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8699-702. PubMed ID: 25958587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A one-pot functionalization strategy for immobilizing proteins onto linear dsDNA scaffolds.
    Berti L; Medintz IL; Alessandrini A; Facci P
    Nanotechnology; 2009 Jun; 20(23):235101. PubMed ID: 19448298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing tethered targets of a single biomolecular complex with atomic force microscopy.
    Wu N; Wang Q; Zhou X; Jia SS; Fan Y; Hu J; Li B
    J Mol Recognit; 2013 Dec; 26(12):700-4. PubMed ID: 24277616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The atomic force microscopy as a lithographic tool: nanografting of DNA nanostructures for biosensing applications.
    Castronovo M; Scaini D
    Methods Mol Biol; 2011; 749():209-21. PubMed ID: 21674375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy.
    Tan YH; Schallom JR; Ganesh NV; Fujikawa K; Demchenko AV; Stine KJ
    Nanoscale; 2011 Aug; 3(8):3395-407. PubMed ID: 21750834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.
    Kozyra J; Ceccarelli A; Torelli E; Lopiccolo A; Gu JY; Fellermann H; Stimming U; Krasnogor N
    ACS Synth Biol; 2017 Jul; 6(7):1140-1149. PubMed ID: 28414914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system.
    Gajos K; Petrou P; Budkowski A; Awsiuk K; Bernasik A; Misiakos K; Rysz J; Raptis I; Kakabakos S
    Analyst; 2015 Feb; 140(4):1127-39. PubMed ID: 25535629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal laser fabrication of micro- and nanostructured chemical templates for directed protein immobilization.
    Schröter A; Franzka S; Hartmann N
    Langmuir; 2014 Dec; 30(49):14841-8. PubMed ID: 25397891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA scaffolds support stable and uniform peptide nanopores.
    Spruijt E; Tusk SE; Bayley H
    Nat Nanotechnol; 2018 Aug; 13(8):739-745. PubMed ID: 29808001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.
    Mejias SH; Couleaud P; Casado S; Granados D; Garcia MA; Abad JM; Cortajarena AL
    Colloids Surf B Biointerfaces; 2016 May; 141():93-101. PubMed ID: 26844645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Study Using DNA Nanotechnology.
    Tadakuma H; Masubuchi T; Ueda T
    Prog Mol Biol Transl Sci; 2016; 139():121-63. PubMed ID: 26970193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of nanostructure on a polymer film using atomic force microscope.
    Jegadesan S; Sindhu S; Valiyaveettil S
    J Nanosci Nanotechnol; 2007 Jun; 7(6):2172-5. PubMed ID: 17655012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Protein Adsorption Through DNA Origami Masks.
    Ramakrishnan S; Grundmeier G; Keller A
    Methods Mol Biol; 2018; 1811():253-262. PubMed ID: 29926458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-resistant DNA tile arrays constructed by template-directed photoligation through 5-carboxyvinyl-2'-deoxyuridine.
    Tagawa M; Shohda K; Fujimoto K; Sugawara T; Suyama A
    Nucleic Acids Res; 2007; 35(21):e140. PubMed ID: 17982178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of local protein structures along DNA using solid-state nanopores.
    Kowalczyk SW; Hall AR; Dekker C
    Nano Lett; 2010 Jan; 10(1):324-8. PubMed ID: 19902919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA.
    Zhou F; Sun W; Ricardo KB; Wang D; Shen J; Yin P; Liu H
    ACS Nano; 2016 Mar; 10(3):3069-77. PubMed ID: 26845641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA nanotechnology based on i-motif structures.
    Dong Y; Yang Z; Liu D
    Acc Chem Res; 2014 Jun; 47(6):1853-60. PubMed ID: 24845472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.