These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 25958826)
1. Phloem sap proteome studied by iTRAQ provides integrated insight into salinity response mechanisms in cucumber plants. Fan H; Xu Y; Du C; Wu X J Proteomics; 2015 Jul; 125():54-67. PubMed ID: 25958826 [TBL] [Abstract][Full Text] [Related]
2. Effects of exogenous 5-aminolevulinic acid on PIP1 and NIP aquaporin gene expression in seedlings of cucumber cultivars subjected to salinity stress. Yan F; Qu D; Zhao YY; Hu XH; Zhao ZY; Zhang Y; Zou ZR Genet Mol Res; 2014 Jan; 13(2):2563-73. PubMed ID: 24535911 [TBL] [Abstract][Full Text] [Related]
3. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. Wang Y; Stevanato P; Lv C; Li R; Geng G J Agric Food Chem; 2019 May; 67(21):6056-6073. PubMed ID: 31070911 [TBL] [Abstract][Full Text] [Related]
4. Cucumis sativus PHLOEM PROTEIN 2-A1 like gene positively regulates salt stress tolerance in cucumber seedlings. Si Y; Fan H; Lu H; Li Y; Guo Y; Liu C; Chai L; Du C Plant Mol Biol; 2023 Apr; 111(6):493-504. PubMed ID: 37016105 [TBL] [Abstract][Full Text] [Related]
5. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. Du C; Li H; Liu C; Fan H J Proteomics; 2021 Feb; 232():104062. PubMed ID: 33276192 [TBL] [Abstract][Full Text] [Related]
6. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage. Hu L; Sun H; Li R; Zhang L; Wang S; Sui X; Zhang Z Plant Cell Environ; 2011 Nov; 34(11):1835-48. PubMed ID: 21707653 [TBL] [Abstract][Full Text] [Related]
7. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. Wang ZQ; Xu XY; Gong QQ; Xie C; Fan W; Yang JL; Lin QS; Zheng SJ J Proteomics; 2014 Feb; 98():189-205. PubMed ID: 24412201 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization and expression analysis of cucumber (Cucumis sativus L.) hexose transporters, involving carbohydrate partitioning and phloem unloading in sink tissues. Cheng JT; Li X; Yao FZ; Shan N; Li YH; Zhang ZX; Sui XL Plant Sci; 2015 Aug; 237():46-56. PubMed ID: 26089151 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Sang T; Shan X; Li B; Shu S; Sun J; Guo S Plant Cell Rep; 2016 Aug; 35(8):1769-82. PubMed ID: 27351994 [TBL] [Abstract][Full Text] [Related]
10. Melon phloem-sap proteome: developmental control and response to viral infection. Malter D; Wolf S Protoplasma; 2011 Jan; 248(1):217-24. PubMed ID: 20924770 [TBL] [Abstract][Full Text] [Related]
11. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
12. Differentially delayed root proteome responses to salt stress in sugar cane varieties. Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and functional analysis of cucumber (Cucumis sativus L.) fruit phloem during early development. Sui X; Nie J; Li X; Scanlon MJ; Zhang C; Zheng Y; Ma S; Shan N; Fei Z; Turgeon R; Zhang Z Plant J; 2018 Dec; 96(5):982-996. PubMed ID: 30194881 [TBL] [Abstract][Full Text] [Related]
14. Phloem loading in cucumber: combined symplastic and apoplastic strategies. Ma S; Sun L; Sui X; Li Y; Chang Y; Fan J; Zhang Z Plant J; 2019 May; 98(3):391-404. PubMed ID: 30604489 [TBL] [Abstract][Full Text] [Related]
15. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
17. Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Gómez G; Pallás V Mol Plant Microbe Interact; 2001 Jul; 14(7):910-3. PubMed ID: 11437265 [TBL] [Abstract][Full Text] [Related]
18. Proteomics and metabolomics analyses reveal the cucurbit sieve tube system as a complex metabolic space. Hu C; Ham BK; El-Shabrawi HM; Alexander D; Zhang D; Ryals J; Lucas WJ Plant J; 2016 Sep; 87(5):442-54. PubMed ID: 27155400 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Protein Synthesis in Cucumber Leaves after Inoculation with Corynespora cassiicola: A Proteomic Approach. Yu G; Yu Y; Fan H; Zhang D; Cui N; Wang X; Jia S; Yang Y; Zhao J Biochemistry (Mosc); 2019 Aug; 84(8):963-977. PubMed ID: 31522678 [TBL] [Abstract][Full Text] [Related]
20. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Wang H; Sui X; Guo J; Wang Z; Cheng J; Ma S; Li X; Zhang Z Plant Cell Environ; 2014 Mar; 37(3):795-810. PubMed ID: 24028217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]