These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25959016)

  • 1. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer.
    Shi L; Jing C; Gu Z; Long YT
    Sci Rep; 2015 May; 5():10142. PubMed ID: 25959016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.
    Cao Y; Xie T; Qian RC; Long YT
    Small; 2017 Jan; 13(2):. PubMed ID: 27787947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single gold nanorod as a plasmon resonance energy transfer based nanosensor for high-sensitivity Cu(II) detection.
    Jing C; Shi L; Liu X; Long YT
    Analyst; 2014 Dec; 139(24):6435-9. PubMed ID: 25338009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General Sensitive Detecting Strategy of Ions through Plasmonic Resonance Energy Transfer from Gold Nanoparticles to Rhodamine Spirolactam.
    Gao MX; Zou HY; Li YF; Huang CZ
    Anal Chem; 2017 Feb; 89(3):1808-1814. PubMed ID: 28208282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting plasmon resonance energy transfer with differential interference contrast microscopy.
    Augspurger AE; Stender AS; Han R; Fang N
    Anal Chem; 2014 Jan; 86(2):1196-201. PubMed ID: 24377308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Particle Plasmonic Sensing of Nitric Oxide in Living Cells.
    Wang SM; Wang H; Gao H; Zhou J; Zhao W; Chen HY; Xu JJ
    Anal Chem; 2023 May; 95(17):7062-7069. PubMed ID: 37072883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Activity Triggered Blocking of Plasmon Resonance Energy Transfer for Highly Selective Detection of Acid Phosphatase.
    Yan X; Xia C; Chen B; Li YF; Gao PF; Huang CZ
    Anal Chem; 2020 Jan; 92(2):2130-2135. PubMed ID: 31850751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.
    Kang KA; Wang J
    J Nanobiotechnology; 2014 Dec; 12():56. PubMed ID: 25481683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ nanospectroscopic pH monitoring by plasmon resonance energy transfer (PRET).
    Shin H; Baek J; Kwon H; Choi Y
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7287-90. PubMed ID: 24245244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer.
    Liu GL; Long YT; Choi Y; Kang T; Lee LP
    Nat Methods; 2007 Dec; 4(12):1015-7. PubMed ID: 18026109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction.
    Shi L; Jing C; Ma W; Li DW; Halls JE; Marken F; Long YT
    Angew Chem Int Ed Engl; 2013 Jun; 52(23):6011-4. PubMed ID: 23616358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells.
    Choi Y; Kang T; Lee LP
    Nano Lett; 2009 Jan; 9(1):85-90. PubMed ID: 19093833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells.
    Gu Z; Jing C; Ying YL; He P; Long YT
    Theranostics; 2015; 5(2):188-95. PubMed ID: 25553107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into a reversible energy transfer system.
    Gao MX; Zou HY; Gao PF; Liu Y; Li N; Li YF; Huang CZ
    Nanoscale; 2016 Sep; 8(36):16236-16242. PubMed ID: 27714032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle-fluorophore complex for conditionally fluorescing signal mediator.
    Wang J; Achilefu S; Nantz M; Kang KA
    Anal Chim Acta; 2011 Jun; 695(1-2):96-104. PubMed ID: 21601036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy.
    Choi Y; Park Y; Kang T; Lee LP
    Nat Nanotechnol; 2009 Nov; 4(11):742-6. PubMed ID: 19893511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of end group modification of DNA-functionalized gold nanoparticles on cellular uptake in HepG2 cells.
    Hong S; Park S; Park J; Yi J
    Colloids Surf B Biointerfaces; 2013 Dec; 112():415-20. PubMed ID: 24036625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength, concentration, and distance dependence of nonradiative energy transfer to a plane of gold nanoparticles.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2012 Oct; 6(10):9283-90. PubMed ID: 22973978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing Carbohydrate-Protein Interaction Based on Single Plasmonic Nanoparticle by Conventional Dark Field Microscopy.
    Jin HY; Li DW; Zhang N; Gu Z; Long YT
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12249-53. PubMed ID: 25985863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.