These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25959398)

  • 1. Phosphorylation-Dependent Enhancement of Rad53 Kinase Activity through the INO80 Chromatin Remodeling Complex.
    Kapoor P; Bao Y; Xiao J; Espejo A; Yang L; Bedford MT; Peng G; Shen X
    Mol Cell; 2015 Jun; 58(5):863-9. PubMed ID: 25959398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA damage checkpoint responses.
    Morrison AJ; Kim JA; Person MD; Highland J; Xiao J; Wehr TS; Hensley S; Bao Y; Shen J; Collins SR; Weissman JS; Delrow J; Krogan NJ; Haber JE; Shen X
    Cell; 2007 Aug; 130(3):499-511. PubMed ID: 17693258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
    Chen ES; Hoch NC; Wang SC; Pellicioli A; Heierhorst J; Tsai MD
    Mol Cell Proteomics; 2014 Feb; 13(2):551-65. PubMed ID: 24302356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.
    Sweeney FD; Yang F; Chi A; Shabanowitz J; Hunt DF; Durocher D
    Curr Biol; 2005 Aug; 15(15):1364-75. PubMed ID: 16085488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling.
    Javaheri A; Wysocki R; Jobin-Robitaille O; Altaf M; Côté J; Kron SJ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13771-6. PubMed ID: 16940359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.
    Schwartz MF; Duong JK; Sun Z; Morrow JS; Pradhan D; Stern DF
    Mol Cell; 2002 May; 9(5):1055-65. PubMed ID: 12049741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function.
    Liang J; Suhandynata RT; Zhou H
    J Biol Chem; 2015 Apr; 290(17):10751-63. PubMed ID: 25762720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1.
    Ma JL; Lee SJ; Duong JK; Stern DF
    J Biol Chem; 2006 Feb; 281(7):3954-63. PubMed ID: 16365046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the Rad53 protein kinase in signal amplification by oligomer assembly and disassembly.
    Jia-Lin Ma N; Stern DF
    Cell Cycle; 2008 Mar; 7(6):808-17. PubMed ID: 18239457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Checkpoint kinases and the INO80 nucleosome remodeling complex enhance global chromatin mobility in response to DNA damage.
    Seeber A; Dion V; Gasser SM
    Genes Dev; 2013 Sep; 27(18):1999-2008. PubMed ID: 24029917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase.
    Kim EM; Jang YK; Park SD
    Nucleic Acids Res; 2002 Feb; 30(3):643-8. PubMed ID: 11809875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Yeast DNA Damage Checkpoint Kinase Rad53 Targets the Exoribonuclease, Xrn1.
    Lao JP; Ulrich KM; Johnson JR; Newton BW; Vashisht AA; Wohlschlegel JA; Krogan NJ; Toczyski DP
    G3 (Bethesda); 2018 Dec; 8(12):3931-3944. PubMed ID: 30377154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade.
    Lee H; Yuan C; Hammet A; Mahajan A; Chen ES; Wu MR; Su MI; Heierhorst J; Tsai MD
    Mol Cell; 2008 Jun; 30(6):767-78. PubMed ID: 18570878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.
    Chen YC; Kenworthy J; Gabrielse C; Hänni C; Zegerman P; Weinreich M
    Genetics; 2013 Jun; 194(2):389-401. PubMed ID: 23564203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint.
    Sun Z; Hsiao J; Fay DS; Stern DF
    Science; 1998 Jul; 281(5374):272-4. PubMed ID: 9657725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Mec1 kinase activity by the SWI/SNF chromatin remodeling complex.
    Kapoor P; Bao Y; Xiao J; Luo J; Shen J; Persinger J; Peng G; Ranish J; Bartholomew B; Shen X
    Genes Dev; 2015 Mar; 29(6):591-602. PubMed ID: 25792597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helicase Subunit Cdc45 Targets the Checkpoint Kinase Rad53 to Both Replication Initiation and Elongation Complexes after Fork Stalling.
    Can G; Kauerhof AC; Macak D; Zegerman P
    Mol Cell; 2019 Feb; 73(3):562-573.e3. PubMed ID: 30595439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mec1-independent activation of the Rad53 checkpoint kinase revealed by quantitative analysis of protein localization dynamics.
    Ho B; Sanford EJ; Loll-Krippleber R; Torres NP; Smolka MB; Brown GW
    Elife; 2023 Jun; 12():. PubMed ID: 37278514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of Rad53 kinase activation by dimerization and activation segment exchange.
    Wybenga-Groot LE; Ho CS; Sweeney FD; Ceccarelli DF; McGlade CJ; Durocher D; Sicheri F
    Cell Signal; 2014 Sep; 26(9):1825-36. PubMed ID: 24815189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
    Dohrmann PR; Sclafani RA
    Genetics; 2006 Sep; 174(1):87-99. PubMed ID: 16816422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.