These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25959596)

  • 1. Active graphene-silicon hybrid diode for terahertz waves.
    Li Q; Tian Z; Zhang X; Singh R; Du L; Gu J; Han J; Zhang W
    Nat Commun; 2015 May; 6():7082. PubMed ID: 25959596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically tuned terahertz modulator based on annealed multilayer MoS2.
    Cao Y; Gan S; Geng Z; Liu J; Yang Y; Bao Q; Chen H
    Sci Rep; 2016 Mar; 6():22899. PubMed ID: 26953153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Multifunctional Photodetector and THz Modulator Based on Graphene/TiO
    Wei M; Zhang D; Zhang L; Jin L; Zhang H
    Nanoscale Res Lett; 2021 Aug; 16(1):134. PubMed ID: 34417916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a Reconfigurable Ultra-Wideband Terahertz Polarization Rotator Based on Graphene Metamaterial.
    Ding G; Zhou Y; Zhang S; Luo X; Wang S
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband graphene terahertz modulators enabled by intraband transitions.
    Sensale-Rodriguez B; Yan R; Kelly MM; Fang T; Tahy K; Hwang WS; Jena D; Liu L; Xing HG
    Nat Commun; 2012 Apr; 3():780. PubMed ID: 22510685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime.
    Wu L; Du T; Xu N; Ding C; Li H; Sheng Q; Liu M; Yao J; Wang Z; Lou X; Zhang W
    Small; 2016 May; 12(19):2610-5. PubMed ID: 27007192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-Superconductor Photonic Integrated Circuits.
    Kalhor S; Kindness SJ; Wallis R; Beere HE; Ghanaatshoar M; Degl'Innocenti R; Kelly MJ; Hofmann S; Joyce HJ; Ritchie DA; Delfanazari K
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance All-Optical Terahertz Modulator Based on Graphene/TiO
    Wei M; Zhang D; Li Y; Zhang L; Jin L; Wen T; Bai F; Zhang H
    Nanoscale Res Lett; 2019 May; 14(1):159. PubMed ID: 31076907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review on Terahertz Technologies Accelerated by Silicon Photonics.
    Xie J; Ye W; Zhou L; Guo X; Zang X; Chen L; Zhu Y
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34201551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation.
    Zhang Y; Feng Y; Zhu B; Zhao J; Jiang T
    Opt Express; 2015 Oct; 23(21):27230-9. PubMed ID: 26480383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband, Spectrally Flat, Graphene-based Terahertz Modulators.
    Shi F; Chen Y; Han P; Tassin P
    Small; 2015 Dec; 11(45):6044-50. PubMed ID: 26448571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching terahertz waves with gate-controlled active graphene metamaterials.
    Lee SH; Choi M; Kim TT; Lee S; Liu M; Yin X; Choi HK; Lee SS; Choi CG; Choi SY; Zhang X; Min B
    Nat Mater; 2012 Nov; 11(11):936-41. PubMed ID: 23023552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial.
    Valmorra F; Scalari G; Maissen C; Fu W; Schönenberger C; Choi JW; Park HG; Beck M; Faist J
    Nano Lett; 2013 Jul; 13(7):3193-8. PubMed ID: 23802181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active control of terahertz surface plasmonic wave excitation using electromagnetically induced transparency based graphene metasurfaces.
    Li Q; Su H; Xu G; Chen T; Zhang X; Wang S
    Opt Express; 2023 Nov; 31(23):37452-37463. PubMed ID: 38017873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz absorber with dynamically switchable dual-broadband based on a hybrid metamaterial with vanadium dioxide and graphene.
    Liu Y; Huang R; Ouyang Z
    Opt Express; 2021 Jun; 29(13):20839-20850. PubMed ID: 34266164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface.
    Zhao YT; Wu B; Huang BJ; Cheng Q
    Opt Express; 2017 Apr; 25(7):7161-7169. PubMed ID: 28380841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide.
    Qi H; Tang B
    Phys Chem Chem Phys; 2023 Mar; 25(11):7825-7831. PubMed ID: 36857684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A graphene-based broadband optical modulator.
    Liu M; Yin X; Ulin-Avila E; Geng B; Zentgraf T; Ju L; Wang F; Zhang X
    Nature; 2011 Jun; 474(7349):64-7. PubMed ID: 21552277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic and Active THz Graphene Metamaterial Devices.
    Wang L; An N; He X; Zhang X; Zhu A; Yao B; Zhang Y
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.