These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25959596)

  • 41. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hybridization-induced broadband terahertz wave absorption with graphene metasurfaces.
    Mou N; Sun S; Dong H; Dong S; He Q; Zhou L; Zhang L
    Opt Express; 2018 Apr; 26(9):11728-11736. PubMed ID: 29716091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamically switchable broadband and triple-band terahertz absorber based on a metamaterial structure with graphene.
    Chen Z; Chen J; Tang H; Shen T; Zhang H
    Opt Express; 2022 Feb; 30(5):6778-6785. PubMed ID: 35299456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Terahertz broadband modulation in a biased BiFeO
    Liu X; Zhang Z; Lin X; Zhang K; Jin Z; Cheng Z; Ma G
    Opt Express; 2016 Nov; 24(23):26618-26628. PubMed ID: 27857394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Switchable scattering meta-surfaces for broadband terahertz modulation.
    Unlu M; Hashemi MR; Berry CW; Li S; Yang SH; Jarrahi M
    Sci Rep; 2014 Jul; 4():5708. PubMed ID: 25028123
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancement of silicon modulating properties in the THz range by YAG-Ce coating.
    Li JS; Hu MS
    Sci Rep; 2020 Apr; 10(1):6605. PubMed ID: 32313115
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vanadium Dioxide-Based Terahertz Metamaterial Devices Switchable between Transmission and Absorption.
    Jiang H; Wang Y; Cui Z; Zhang X; Zhu Y; Zhang K
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Advances in terahertz metasurface graphene for biosensing and application.
    Bi H; Yang M; You R
    Discov Nano; 2023 Dec; 18(1):63. PubMed ID: 37091985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.
    Yang SH; Watts R; Li X; Wang N; Cojocaru V; O'Gorman J; Barry LP; Jarrahi M
    Opt Express; 2015 Nov; 23(24):31206-15. PubMed ID: 26698749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures.
    Gao W; Shu J; Reichel K; Nickel DV; He X; Shi G; Vajtai R; Ajayan PM; Kono J; Mittleman DM; Xu Q
    Nano Lett; 2014 Mar; 14(3):1242-8. PubMed ID: 24490772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.
    Kannegulla A; Cheng LJ
    Opt Lett; 2016 Aug; 41(15):3539-42. PubMed ID: 27472613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multifunctional terahertz metamaterial based on vanadium dioxide and silicon.
    Wang J; Wang Z; Wang X; Shi K; Lu Y; Sun Z
    Appl Opt; 2023 Apr; 62(12):3149-3159. PubMed ID: 37133163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface.
    Li Q; Cong L; Singh R; Xu N; Cao W; Zhang X; Tian Z; Du L; Han J; Zhang W
    Nanoscale; 2016 Oct; 8(39):17278-17284. PubMed ID: 27714077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures.
    Shi SF; Zeng B; Han HL; Hong X; Tsai HZ; Jung HS; Zettl A; Crommie MF; Wang F
    Nano Lett; 2015 Jan; 15(1):372-7. PubMed ID: 25483819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrafast refractive index control of a terahertz graphene metamaterial.
    Lee SH; Choi J; Kim HD; Choi H; Min B
    Sci Rep; 2013; 3():2135. PubMed ID: 23823715
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors.
    Wang L; Chen X; Yu A; Zhang Y; Ding J; Lu W
    Sci Rep; 2014 Jun; 4():5470. PubMed ID: 24969065
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Highly Efficient Active All-Dielectric Metasurfaces Based on Hybrid Structures Integrated with Phase-Change Materials: From Terahertz to Optical Ranges.
    Lan C; Ma H; Wang M; Gao Z; Liu K; Bi K; Zhou J; Xin X
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14229-14238. PubMed ID: 30896151
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metamaterials: A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime (Small 19/2016).
    Wu L; Du T; Xu N; Ding C; Li H; Sheng Q; Liu M; Yao J; Wang Z; Lou X; Zhang W
    Small; 2016 May; 12(19):2609. PubMed ID: 27167323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Device architectures for low voltage and ultrafast graphene integrated phase modulators.
    Mao D; Cheng C; Wang F; Xiao Y; Li T; Chang L; Soman A; Kananen T; Zhang X; Krainak M; Dong P; Gu T
    IEEE J Sel Top Quantum Electron; 2021; 27(2):1-9. PubMed ID: 33154613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.