These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

768 related articles for article (PubMed ID: 25959775)

  • 1. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.
    Samai P; Pyenson N; Jiang W; Goldberg GW; Hatoum-Aslan A; Marraffini LA
    Cell; 2015 May; 161(5):1164-1174. PubMed ID: 25959775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity.
    Rostøl JT; Marraffini LA
    Nat Microbiol; 2019 Apr; 4(4):656-662. PubMed ID: 30692669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.
    Hatoum-Aslan A; Maniv I; Samai P; Marraffini LA
    J Bacteriol; 2014 Jan; 196(2):310-7. PubMed ID: 24187086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity.
    Wang L; Mo CY; Wasserman MR; Rostøl JT; Marraffini LA; Liu S
    Mol Cell; 2019 Jan; 73(2):278-290.e4. PubMed ID: 30503774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity.
    Jiang W; Samai P; Marraffini LA
    Cell; 2016 Feb; 164(4):710-21. PubMed ID: 26853474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type III CRISPR-Cas Immunity: Major Differences Brushed Aside.
    Tamulaitis G; Venclovas Č; Siksnys V
    Trends Microbiol; 2017 Jan; 25(1):49-61. PubMed ID: 27773522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular determinants for CRISPR RNA maturation in the Cas10-Csm complex and roles for non-Cas nucleases.
    Walker FC; Chou-Zheng L; Dunkle JA; Hatoum-Aslan A
    Nucleic Acids Res; 2017 Feb; 45(4):2112-2123. PubMed ID: 28204542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.
    Hatoum-Aslan A; Samai P; Maniv I; Jiang W; Marraffini LA
    J Biol Chem; 2013 Sep; 288(39):27888-97. PubMed ID: 23935102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
    Goldberg GW; Jiang W; Bikard D; Marraffini LA
    Nature; 2014 Oct; 514(7524):633-7. PubMed ID: 25174707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal Structures of Csm2 and Csm3 in the Type III-A CRISPR-Cas Effector Complex.
    Takeshita D; Sato M; Inanaga H; Numata T
    J Mol Biol; 2019 Feb; 431(4):748-763. PubMed ID: 30639408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria.
    Nussenzweig PM; Marraffini LA
    Annu Rev Genet; 2020 Nov; 54():93-120. PubMed ID: 32857635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ribonuclease activity of Csm6 is required for anti-plasmid immunity by Type III-A CRISPR-Cas systems.
    Foster K; Kalter J; Woodside W; Terns RM; Terns MP
    RNA Biol; 2019 Apr; 16(4):449-460. PubMed ID: 29995577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of an active type III-A CRISPR effector complex.
    Smith EM; Ferrell S; Tokars VL; Mondragón A
    Structure; 2022 Aug; 30(8):1109-1128.e6. PubMed ID: 35714601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
    Wakefield N; Rajan R; Sontheimer EJ
    FEBS Lett; 2015 Oct; 589(20 Pt B):3197-204. PubMed ID: 26364721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA.
    Li Y; Zhang Y; Lin J; Pan S; Han W; Peng N; Liang YX; She Q
    Nucleic Acids Res; 2017 Nov; 45(19):11305-11314. PubMed ID: 28977458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.
    Han W; Li Y; Deng L; Feng M; Peng W; Hallstrøm S; Zhang J; Peng N; Liang YX; White MF; She Q
    Nucleic Acids Res; 2017 Feb; 45(4):1983-1993. PubMed ID: 27986854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primed CRISPR DNA uptake in Pyrococcus furiosus.
    Garrett S; Shiimori M; Watts EA; Clark L; Graveley BR; Terns MP
    Nucleic Acids Res; 2020 Jun; 48(11):6120-6135. PubMed ID: 32421777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.
    Pyenson NC; Gayvert K; Varble A; Elemento O; Marraffini LA
    Cell Host Microbe; 2017 Sep; 22(3):343-353.e3. PubMed ID: 28826839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.