BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25959965)

  • 1. Acetylcholine mediates behavioral and neural post-error control.
    Danielmeier C; Allen EA; Jocham G; Onur OA; Eichele T; Ullsperger M
    Curr Biol; 2015 Jun; 25(11):1461-8. PubMed ID: 25959965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posterior medial frontal cortex activity predicts post-error adaptations in task-related visual and motor areas.
    Danielmeier C; Eichele T; Forstmann BU; Tittgemeyer M; Ullsperger M
    J Neurosci; 2011 Feb; 31(5):1780-9. PubMed ID: 21289188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-error behavioral adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant information processing.
    King JA; Korb FM; von Cramon DY; Ullsperger M
    J Neurosci; 2010 Sep; 30(38):12759-69. PubMed ID: 20861380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human medial frontal cortex activity predicts learning from errors.
    Hester R; Barre N; Murphy K; Silk TJ; Mattingley JB
    Cereb Cortex; 2008 Aug; 18(8):1933-40. PubMed ID: 18063560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of performance-monitoring function in the posterior medial frontal cortex.
    Fitzgerald KD; Perkins SC; Angstadt M; Johnson T; Stern ER; Welsh RC; Taylor SF
    Neuroimage; 2010 Feb; 49(4):3463-73. PubMed ID: 19913101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When goals are missed: dealing with self-generated and externally induced failure.
    Ullsperger M; Nittono H; von Cramon DY
    Neuroimage; 2007 Apr; 35(3):1356-64. PubMed ID: 17350291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the medial frontal cortex in cognitive control.
    Ridderinkhof KR; Ullsperger M; Crone EA; Nieuwenhuis S
    Science; 2004 Oct; 306(5695):443-7. PubMed ID: 15486290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error-likelihood prediction in the medial frontal cortex: a critical evaluation.
    Nieuwenhuis S; Schweizer TS; Mars RB; Botvinick MM; Hajcak G
    Cereb Cortex; 2007 Jul; 17(7):1570-81. PubMed ID: 16956979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural disconnection of the posterior medial frontal cortex reduces speech error monitoring.
    McCall JD; Vivian Dickens J; Mandal AS; DeMarco AT; Fama ME; Lacey EH; Kelkar A; Medaglia JD; Turkeltaub PE
    Neuroimage Clin; 2022; 33():102934. PubMed ID: 34995870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: a dual in vivo microdialysis study with functional correlates in the rat brain.
    Laplante F; Morin Y; Quirion R; Vaucher E
    Neuroscience; 2005; 132(2):501-10. PubMed ID: 15802200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning from errors: error-related neural activity predicts improvements in future inhibitory control performance.
    Hester R; Madeley J; Murphy K; Mattingley JB
    J Neurosci; 2009 Jun; 29(22):7158-65. PubMed ID: 19494138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive conflict and inhibition in primed dichotic listening.
    Saetrevik B; Specht K
    Brain Cogn; 2009 Oct; 71(1):20-5. PubMed ID: 19403218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection.
    Sarter M; Hasselmo ME; Bruno JP; Givens B
    Brain Res Brain Res Rev; 2005 Feb; 48(1):98-111. PubMed ID: 15708630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.
    Hochman EY; Orr JM; Gehring WJ
    Cereb Cortex; 2014 Feb; 24(2):414-25. PubMed ID: 23064106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.
    Hester R; Murphy K; Brown FL; Skilleter AJ
    J Neurosci; 2010 Nov; 30(46):15600-7. PubMed ID: 21084615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot study of response inhibition and error processing in the posterior medial prefrontal cortex in healthy youth.
    Fitzgerald KD; Zbrozek CD; Welsh RC; Britton JC; Liberzon I; Taylor SF
    J Child Psychol Psychiatry; 2008 Sep; 49(9):986-94. PubMed ID: 18422547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information.
    Egner T; Hirsch J
    Nat Neurosci; 2005 Dec; 8(12):1784-90. PubMed ID: 16286928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-error recruitment of frontal sensory cortical projections promotes attention in mice.
    Norman KJ; Riceberg JS; Koike H; Bateh J; McCraney SE; Caro K; Kato D; Liang A; Yamamuro K; Flanigan ME; Kam K; Falk EN; Brady DM; Cho C; Sadahiro M; Yoshitake K; Maccario P; Demars MP; Waltrip L; Varga AW; Russo SJ; Baxter MG; Shapiro ML; Rudebeck PH; Morishita H
    Neuron; 2021 Apr; 109(7):1202-1213.e5. PubMed ID: 33609483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromodulatory role of acetylcholine in visually-induced cortical activation: behavioral and neuroanatomical correlates.
    Dotigny F; Ben Amor AY; Burke M; Vaucher E
    Neuroscience; 2008 Jul; 154(4):1607-18. PubMed ID: 18515016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.