These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 25960360)
1. One-pot synthesis and Nb4N5 surface modification of Nb(4+) self-doped KNbO3 nanorods for enhanced visible-light-driven hydrogen production. Wang J; Wang X; Cui Z; Liu B; Cao M Phys Chem Chem Phys; 2015 Jun; 17(21):14185-92. PubMed ID: 25960360 [TBL] [Abstract][Full Text] [Related]
2. One-pot, low-temperature synthesis of self-doped NaTaO3 nanoclusters for visible-light-driven photocatalysis. Wang J; Su S; Liu B; Cao M; Hu C Chem Commun (Camb); 2013 Sep; 49(71):7830-2. PubMed ID: 23887244 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic studies of the photocatalytic oxidation of trichloroethylene with visible-light-driven N-doped TiO2 photocatalysts. Joung SK; Amemiya T; Murabayashi M; Itoh K Chemistry; 2006 Jul; 12(21):5526-34. PubMed ID: 16548017 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of InGaZn mixed oxide nanorods for enhanced hydrogen production under visible light. Martha S; Reddy KH; Biswal N; Parida K Dalton Trans; 2012 Dec; 41(46):14107-16. PubMed ID: 23032399 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis and enhanced visible-light photocatalytic activity of Ag₂S nanocrystal-sensitized Ag₈W₄O₁₆ nanorods. Wang X; Zhan S; Wang Y; Wang P; Yu H; Yu J; Hu C J Colloid Interface Sci; 2014 May; 422():30-7. PubMed ID: 24655825 [TBL] [Abstract][Full Text] [Related]
6. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity. Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161 [TBL] [Abstract][Full Text] [Related]
7. Visible-light-driven Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification. Qiu X; Miyauchi M; Yu H; Irie H; Hashimoto K J Am Chem Soc; 2010 Nov; 132(43):15259-67. PubMed ID: 20932016 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Xiang Q; Yu J; Jaroniec M Phys Chem Chem Phys; 2011 Mar; 13(11):4853-61. PubMed ID: 21103562 [TBL] [Abstract][Full Text] [Related]
9. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. Guo C; Tian K; Wang L; Liang F; Wang F; Chen D; Ning J; Zhong Y; Hu Y J Colloid Interface Sci; 2021 Feb; 583():661-671. PubMed ID: 33039863 [TBL] [Abstract][Full Text] [Related]
10. Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Chang X; Sun S; Zhou Y; Dong L; Yin Y Nanotechnology; 2011 Jul; 22(26):265603. PubMed ID: 21576793 [TBL] [Abstract][Full Text] [Related]
11. Covalently Connected Nb Yang Y; Wang Y; He HL; Yan W; Fang L; Zhang YB; Qin Y; Long R; Zhang XM; Fan X ACS Nano; 2020 Apr; 14(4):4925-4937. PubMed ID: 32207915 [TBL] [Abstract][Full Text] [Related]
12. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. Zuo F; Wang L; Wu T; Zhang Z; Borchardt D; Feng P J Am Chem Soc; 2010 Sep; 132(34):11856-7. PubMed ID: 20687606 [TBL] [Abstract][Full Text] [Related]
13. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Qu D; Zheng M; Du P; Zhou Y; Zhang L; Li D; Tan H; Zhao Z; Xie Z; Sun Z Nanoscale; 2013 Dec; 5(24):12272-7. PubMed ID: 24150696 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Sun Y; Zhao Z; Dong F; Zhang W Phys Chem Chem Phys; 2015 Apr; 17(16):10383-90. PubMed ID: 25765222 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Visible Photocatalytic Hydrogen Evolution of KN-Based Semiconducting Ferroelectrics Lan Y; Sun Z; Yuan C; Xue X; Chen J; Miao L; Guo Y; Zhou C; Xu J; Zhou J; Wang J; Rao G ACS Appl Mater Interfaces; 2022 Feb; 14(7):8916-8930. PubMed ID: 35138789 [TBL] [Abstract][Full Text] [Related]
16. Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures. Kumar S; Khanchandani S; Thirumal M; Ganguli AK ACS Appl Mater Interfaces; 2014 Aug; 6(15):13221-33. PubMed ID: 25025823 [TBL] [Abstract][Full Text] [Related]
17. Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Jiang J; Zhang L; Li H; He W; Yin JJ Nanoscale; 2013 Nov; 5(21):10573-81. PubMed ID: 24056871 [TBL] [Abstract][Full Text] [Related]
18. Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping. Zhou Y; Wang Y; Wen T; Chang B; Guo Y; Lin Z; Yang B J Colloid Interface Sci; 2016 Jan; 461():185-194. PubMed ID: 26397927 [TBL] [Abstract][Full Text] [Related]
19. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Wu Z; Dong F; Zhao W; Wang H; Liu Y; Guan B Nanotechnology; 2009 Jun; 20(23):235701. PubMed ID: 19451679 [TBL] [Abstract][Full Text] [Related]
20. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Wang DH; Wang L; Xu AW Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]