These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25960603)

  • 1. Calixarene-Mediated Synthesis of Cobalt Nanoparticles: An Accretion Model for Separate Control over Nucleation and Growth.
    Chen Z; Liu J; Evans AJ; Alberch L; Wei A
    Chem Mater; 2014; 26(2):941-950. PubMed ID: 25960603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The critical role of surfactants in the growth of cobalt nanoparticles.
    Bao Y; An W; Turner CH; Krishnan KM
    Langmuir; 2010 Jan; 26(1):478-83. PubMed ID: 19743830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
    Zacharaki E; Kalyva M; Fjellvåg H; Sjåstad AO
    Chem Cent J; 2016; 10():10. PubMed ID: 26958074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenucleation and coalescence of cobalt nanoclusters mediated by multivalent calixarene complexes.
    Liu J; Wei A
    Chem Commun (Camb); 2009 Jul; (28):4254-6. PubMed ID: 19585038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering.
    Lassenberger A; Grünewald TA; van Oostrum PDJ; Rennhofer H; Amenitsch H; Zirbs R; Lichtenegger HC; Reimhult E
    Chem Mater; 2017 May; 29(10):4511-4522. PubMed ID: 28572705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and self-assembly of monodisperse Co(x)Ni(100-x) (x=50,80) colloidal nanoparticles by homogenous nucleation.
    Sharma S; Gajbhiye NS; Ningthoujam RS
    J Colloid Interface Sci; 2010 Nov; 351(2):323-9. PubMed ID: 20728900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution.
    Min Y; Kwak J; Soon A; Jeong U
    Acc Chem Res; 2014 Oct; 47(10):2887-93. PubMed ID: 25133523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle Heat-Up Synthesis:
    Leffler V; Ehlert S; Förster B; Dulle M; Förster S
    ACS Nano; 2021 Jan; 15(1):840-856. PubMed ID: 33393769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals.
    Shevchenko EV; Talapin DV; Schnablegger H; Kornowski A; Festin O; Svedlindh P; Haase M; Weller H
    J Am Chem Soc; 2003 Jul; 125(30):9090-101. PubMed ID: 15369366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of pre-nucleation clusters in the crystallization of gold nanoparticles.
    Ramamoorthy RK; Yildirim E; Barba E; Roblin P; Vargas JA; Lacroix LM; Rodriguez-Ruiz I; Decorse P; Petkov V; Teychené S; Viau G
    Nanoscale; 2020 Aug; 12(30):16173-16188. PubMed ID: 32701100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the formation of a polynuclear Co16 complex and its elimination and substitution reactions by mass spectroscopy and crystallography.
    Hu YQ; Zeng MH; Zhang K; Hu S; Zhou FF; Kurmoo M
    J Am Chem Soc; 2013 May; 135(21):7901-8. PubMed ID: 23651120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Seed-Mediated Growth of Co Nanoparticles by the Polyol Process: Unraveling the Heterogeneous Nucleation.
    Ramamoorthy RK; Viola A; Grindi B; Peron J; Gatel C; Hytch M; Arenal R; Sicard L; Giraud M; Piquemal JY; Viau G
    Nano Lett; 2019 Dec; 19(12):9160-9169. PubMed ID: 31756108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt nanowires prepared by heterogeneous nucleation in propanediol and their catalytic properties.
    Liu Q; Guo X; Chen J; Li J; Song W; Shen W
    Nanotechnology; 2008 Sep; 19(36):365608. PubMed ID: 21828879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistep nucleation of nanocrystals in aqueous solution.
    Loh ND; Sen S; Bosman M; Tan SF; Zhong J; Nijhuis CA; Král P; Matsudaira P; Mirsaidov U
    Nat Chem; 2017 Jan; 9(1):77-82. PubMed ID: 27995918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How nanocrystallinity and order define the magnetic properties of ε-Co supracrystals.
    Yang J; Khazen K; Pileni MP
    J Phys Condens Matter; 2014 Jul; 26(29):295303. PubMed ID: 24961406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The onset of aerosol Au nanoparticle crystallization: accretion & explosive nucleation.
    Wang Y; Goudeli E
    Nanoscale; 2024 Oct; 16(38):17942-17953. PubMed ID: 39189868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe(CO)x (x < 5)-oleylamine and platinum(ii) acetylacetonate.
    Bian B; Xia W; Du J; Zhang J; Liu JP; Guo Z; Yan A
    Nanoscale; 2013 Mar; 5(6):2454-9. PubMed ID: 23403464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.
    Krishnan G; de Graaf S; Ten Brink GH; Persson POÅ; Kooi BJ; Palasantzas G
    Nanoscale; 2017 Jun; 9(24):8149-8156. PubMed ID: 28580986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.