These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 25960650)

  • 1. Magnetic particle imaging: current developments and future directions.
    Panagiotopoulos N; Duschka RL; Ahlborg M; Bringout G; Debbeler C; Graeser M; Kaethner C; Lüdtke-Buzug K; Medimagh H; Stelzner J; Buzug TM; Barkhausen J; Vogt FM; Haegele J
    Int J Nanomedicine; 2015; 10():3097-114. PubMed ID: 25960650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological impact of superparamagnetic iron oxide nanoparticles for magnetic particle imaging of head and neck cancer cells.
    Lindemann A; Lüdtke-Buzug K; Fräderich BM; Gräfe K; Pries R; Wollenberg B
    Int J Nanomedicine; 2014; 9():5025-40. PubMed ID: 25378928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Particle Imaging: Current Applications in Biomedical Research.
    Talebloo N; Gudi M; Robertson N; Wang P
    J Magn Reson Imaging; 2020 Jun; 51(6):1659-1668. PubMed ID: 31332868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging.
    Ziemian S; Löwa N; Kosch O; Bajj D; Wiekhorst F; Schütz G
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning surface coatings of optimized magnetite nanoparticle tracers for
    Khandhar AP; Ferguson RM; Arami H; Kemp SJ; Krishnan KM
    IEEE Trans Magn; 2015 Feb; 51(2):. PubMed ID: 25904816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.
    Bente K; Weber M; Graeser M; Sattel TF; Erbe M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):644-51. PubMed ID: 25350924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration.
    Top CB; Gungor A
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4164-4173. PubMed ID: 32746156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular dynamics of superparamagnetic iron oxide nanoparticles for magnetic particle imaging.
    Teeman E; Shasha C; Evans JE; Krishnan KM
    Nanoscale; 2019 Apr; 11(16):7771-7780. PubMed ID: 30951062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms.
    Vaalma S; Rahmer J; Panagiotopoulos N; Duschka RL; Borgert J; Barkhausen J; Vogt FM; Haegele J
    PLoS One; 2017; 12(1):e0168902. PubMed ID: 28056102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality.
    Harvell-Smith S; Tung LD; Thanh NTK
    Nanoscale; 2022 Mar; 14(10):3658-3697. PubMed ID: 35080544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Picogram Detection of Superparamagnetic Iron-Oxide Particles Using a Gradiometric Receive Coil.
    Graeser M; Knopp T; Szwargulski P; Friedrich T; von Gladiss A; Kaul M; Krishnan KM; Ittrich H; Adam G; Buzug TM
    Sci Rep; 2017 Jul; 7(1):6872. PubMed ID: 28761103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures.
    Billings C; Langley M; Warrington G; Mashali F; Johnson JA
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Particle Imaging in Neurosurgery.
    Meola A; Rao J; Chaudhary N; Song G; Zheng X; Chang SD
    World Neurosurg; 2019 May; 125():261-270. PubMed ID: 30738942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supervised Signal Denoising for Magnetic Particle Imaging.
    Peng H; Li Y; Yang X; Tian J; Hui H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic particle imaging: introduction to imaging and hardware realization.
    Buzug TM; Bringout G; Erbe M; Gräfe K; Graeser M; Grüttner M; Halkola A; Sattel TF; Tenner W; Wojtczyk H; Haegele J; Vogt FM; Barkhausen J; Lüdtke-Buzug K
    Z Med Phys; 2012 Dec; 22(4):323-34. PubMed ID: 22909418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages.
    Polasky C; Studt T; Steuer AK; Loyal K; Lüdtke-Buzug K; Bruchhage KL; Pries R
    Front Mol Biosci; 2022; 9():811116. PubMed ID: 35211509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas.
    Mu K; Zhang S; Ai T; Jiang J; Yao Y; Jiang L; Zhou Q; Xiang H; Zhu Y; Yang X; Zhu W
    Mol Imaging; 2015; 14():. PubMed ID: 26044549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of the surface gradiometer receive coils for the improved detection limit and sensitivity in the single-sided MPI scanner.
    McDonough C; Pagan J; Tonyushkin A
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36541550
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.