These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 25961028)

  • 21. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data.
    Tong DL; Schierz AC
    Artif Intell Med; 2011 Sep; 53(1):47-56. PubMed ID: 21775110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiclass cancer classification using semisupervised ellipsoid ARTMAP and particle swarm optimization with gene expression data.
    Xu R; Anagnostopoulos GC; Wunsch DC
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):65-77. PubMed ID: 17277414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the prediction of IDC breast cancer staging from gene expression profiles using hybrid feature selection methods and deep learning architecture.
    Kishore A; Venkataramana L; Prasad DVV; Mohan A; Jha B
    Med Biol Eng Comput; 2023 Nov; 61(11):2895-2919. PubMed ID: 37530887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whale optimized mixed kernel function of support vector machine for colorectal cancer diagnosis.
    Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C
    J Biomed Inform; 2019 Apr; 92():103124. PubMed ID: 30796977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The construction of support vector machine classifier using the firefly algorithm.
    Chao CF; Horng MH
    Comput Intell Neurosci; 2015; 2015():212719. PubMed ID: 25802511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-HMOSHSSA: Gene selection for cancer classification using multi-objective meta-heuristic and machine learning methods.
    Sharma A; Rani R
    Comput Methods Programs Biomed; 2019 Sep; 178():219-235. PubMed ID: 31416551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection.
    Mahto R; Ahmed SU; Rahman RU; Aziz RM; Roy P; Mallik S; Li A; Shah MA
    BMC Bioinformatics; 2023 Dec; 24(1):479. PubMed ID: 38102551
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer.
    Lee ZJ
    Artif Intell Med; 2008 Jan; 42(1):81-93. PubMed ID: 18006289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene selection for cancer classification with the help of bees.
    Moosa JM; Shakur R; Kaykobad M; Rahman MS
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):47. PubMed ID: 27510562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fast gene selection method for multi-cancer classification using multiple support vector data description.
    Cao J; Zhang L; Wang B; Li F; Yang J
    J Biomed Inform; 2015 Feb; 53():381-9. PubMed ID: 25549938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A TRIZ-inspired bat algorithm for gene selection in cancer classification.
    Al-Betar MA; Alomari OA; Abu-Romman SM
    Genomics; 2020 Jan; 112(1):114-126. PubMed ID: 31676302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An effective hybrid approach of gene selection and classification for microarray data based on clustering and particle swarm optimization.
    Han F; Yang S; Guan J
    Int J Data Min Bioinform; 2015; 13(2):103-21. PubMed ID: 26547970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.
    Martinez E; Alvarez MM; Trevino V
    Comput Biol Chem; 2010 Aug; 34(4):244-50. PubMed ID: 20888301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimum redundancy feature selection from microarray gene expression data.
    Ding C; Peng H
    J Bioinform Comput Biol; 2005 Apr; 3(2):185-205. PubMed ID: 15852500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A hybrid machine learning feature selection model-HMLFSM to enhance gene classification applied to multiple colon cancers dataset.
    Al-Rajab M; Lu J; Xu Q; Kentour M; Sawsa A; Shuweikeh E; Joy M; Arasaradnam R
    PLoS One; 2023; 18(11):e0286791. PubMed ID: 37917732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
    Rani RR; Ramyachitra D
    Biosystems; 2016 Dec; 150():177-189. PubMed ID: 27784624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic algorithm-based feature selection with manifold learning for cancer classification using microarray data.
    Wang Z; Zhou Y; Takagi T; Song J; Tian YS; Shibuya T
    BMC Bioinformatics; 2023 Apr; 24(1):139. PubMed ID: 37031189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing cancer diagnosis: A hybrid approach of genetic operators and Sinh Cosh Optimizer for tumor identification and feature gene selection.
    Emam MM; Houssein EH; Samee NA; Alkhalifa AK; Hosney ME
    Comput Biol Med; 2024 Sep; 180():108984. PubMed ID: 39128177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene selection algorithm by combining reliefF and mRMR.
    Zhang Y; Ding C; Li T
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S27. PubMed ID: 18831793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.