These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25961803)

  • 1. Thermoacoustic transduction in individual suspended carbon nanotubes.
    Mason BJ; Chang SW; Chen J; Cronin SB; Bushmaker AW
    ACS Nano; 2015 May; 9(5):5372-6. PubMed ID: 25961803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.
    Aliev AE; Mayo NK; Baughman RH; Avirovik D; Priya S; Zarnetske MR; Blottman JB
    Nanotechnology; 2014 Oct; 25(40):405704. PubMed ID: 25213658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin thermoacoustic nanobridge loudspeakers from ALD on polyimide.
    Brown JJ; Moore NC; Supekar OD; Gertsch JC; Bright VM
    Nanotechnology; 2016 Nov; 27(47):475504. PubMed ID: 27779111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative nanostructures for thermophones.
    Aliev AE; Mayo NK; Jung de Andrade M; Robles RO; Fang S; Baughman RH; Zhang M; Chen Y; Lee JA; Kim SJ
    ACS Nano; 2015 May; 9(5):4743-56. PubMed ID: 25748853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of a high-powered carbon nanotube thin-film loudspeaker.
    Barnard AR; Jenkins DM; Brungart TA; McDevitt TM; Kline BL
    J Acoust Soc Am; 2013 Sep; 134(3):EL276-81. PubMed ID: 23968060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoacoustic chips with carbon nanotube thin yarn arrays.
    Wei Y; Lin X; Jiang K; Liu P; Li Q; Fan S
    Nano Lett; 2013 Oct; 13(10):4795-801. PubMed ID: 24041369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental quantification of the true efficiency of carbon nanotube thin-film thermophones.
    Bouman TM; Barnard AR; Asgarisabet M
    J Acoust Soc Am; 2016 Mar; 139(3):1353-63. PubMed ID: 27036272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes.
    Aliev AE; Codoluto D; Baughman RH; Ovalle-Robles R; Inoue K; Romanov SA; Nasibulin AG; Kumar P; Priya S; Mayo NK; Blottman JB
    Nanotechnology; 2018 Aug; 29(32):325704. PubMed ID: 29763412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Transient Thermoacoustic Characteristics and Performance in Carbon Nanotube Sponge Underwater Transducers.
    Qi Q; Li Z; Yin H; Feng Y; Zhou Z; Rong D
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonized Electrospun Nanofiber Sheets for Thermophones.
    Aliev AE; Perananthan S; Ferraris JP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31192-31201. PubMed ID: 27776207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Frequency Response of Nanostructured Thermoacoustic Loudspeakers.
    Torraca P; Bobinger M; Servadio M; Pavan P; Becherer M; Lugli P; Larcher L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30322201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.
    Wang HD; Liu JH; Zhang X; Zhang RF; Wei F
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2939-43. PubMed ID: 26353517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical impedance measurement of a carbon nanotube probe electrode.
    Inaba A; Takei Y; Kan T; Matsumoto K; Shimoyama I
    Nanotechnology; 2012 Dec; 23(48):485302. PubMed ID: 23124171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method.
    Li Q; Liu C; Wang X; Fan S
    Nanotechnology; 2009 Apr; 20(14):145702. PubMed ID: 19420532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Large-Scale and Low-Cost Thermoacoustic Loudspeaker Based on Three-Dimensional Graphene Foam.
    Hou W; Wei Y; Wang Y; Duan S; Guo Z; Tian H; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38683903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-Based Thermoacoustic Sound Source.
    Qiao Y; Gou G; Wu F; Jian J; Li X; Hirtz T; Zhao Y; Zhi Y; Wang F; Tian H; Yang Y; Ren TL
    ACS Nano; 2020 Apr; 14(4):3779-3804. PubMed ID: 32186849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underwater Thermoacoustic Generation by a Hierarchical Tetrapodal Carbon Nanotube Network.
    Liu N; Saure LM; Sriramdas R; Schütt F; Wang K; Nozariasbmarz A; Zhang Y; Adelung R; Baughman RH; Priya S; Li W; Poudel B
    ACS Nano; 2024 Mar; 18(12):8988-8995. PubMed ID: 38478913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold wire constant voltage anemometry to measure temperature fluctuations and its application in a thermoacoustic system.
    Cleve S; Jondeau E; Blanc-Benon P; Comte-Bellot G
    Rev Sci Instrum; 2017 Apr; 88(4):044904. PubMed ID: 28456248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.