These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1017 related articles for article (PubMed ID: 25961827)
1. AKT inhibition overcomes rapamycin resistance by enhancing the repressive function of PRAS40 on mTORC1/4E-BP1 axis. Mi W; Ye Q; Liu S; She QB Oncotarget; 2015 Jun; 6(16):13962-77. PubMed ID: 25961827 [TBL] [Abstract][Full Text] [Related]
2. The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Wang H; Huang F; Wang J; Wang P; Lv W; Hong L; Li S; Zhou J Cell Cycle; 2015; 14(2):232-42. PubMed ID: 25607647 [TBL] [Abstract][Full Text] [Related]
3. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Zeng Q; Qin S; Zhang H; Liu B; Qin J; Wang X; Zhang R; Liu C; Dong X; Zhang S; Huang S; Chen L J Cell Physiol; 2018 Jan; 233(1):516-529. PubMed ID: 28300280 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1. Nascimento EB; Snel M; Guigas B; van der Zon GC; Kriek J; Maassen JA; Jazet IM; Diamant M; Ouwens DM Cell Signal; 2010 Jun; 22(6):961-7. PubMed ID: 20138985 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. Rapley J; Oshiro N; Ortiz-Vega S; Avruch J J Biol Chem; 2011 Nov; 286(44):38043-38053. PubMed ID: 21914810 [TBL] [Abstract][Full Text] [Related]
6. High prevalence of mTOR complex activity can be targeted using Torin2 in papillary thyroid carcinoma. Ahmed M; Hussain AR; Bavi P; Ahmed SO; Al Sobhi SS; Al-Dayel F; Uddin S; Al-Kuraya KS Carcinogenesis; 2014 Jul; 35(7):1564-72. PubMed ID: 24583924 [TBL] [Abstract][Full Text] [Related]
7. Feedback loops blockade potentiates apoptosis induction and antitumor activity of a novel AKT inhibitor DC120 in human liver cancer. Yang F; Deng R; Qian XJ; Chang SH; Wu XQ; Qin J; Feng GK; Ding K; Zhu XF Cell Death Dis; 2014 Mar; 5(3):e1114. PubMed ID: 24625973 [TBL] [Abstract][Full Text] [Related]
9. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines. Murai A; Asa SA; Kodama A; Hirata A; Yanai T; Sakai H BMC Vet Res; 2012 Jul; 8():128. PubMed ID: 22839755 [TBL] [Abstract][Full Text] [Related]
10. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. Oshiro N; Takahashi R; Yoshino K; Tanimura K; Nakashima A; Eguchi S; Miyamoto T; Hara K; Takehana K; Avruch J; Kikkawa U; Yonezawa K J Biol Chem; 2007 Jul; 282(28):20329-39. PubMed ID: 17517883 [TBL] [Abstract][Full Text] [Related]
11. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. Fonseca BD; Smith EM; Lee VH; MacKintosh C; Proud CG J Biol Chem; 2007 Aug; 282(34):24514-24. PubMed ID: 17604271 [TBL] [Abstract][Full Text] [Related]
12. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674 [TBL] [Abstract][Full Text] [Related]
13. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235 [TBL] [Abstract][Full Text] [Related]
14. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells. Zhang C; Yang L; Geng YD; An FL; Xia YZ; Guo C; Luo JG; Zhang LY; Guo QL; Kong LY Oncotarget; 2016 May; 7(19):27819-37. PubMed ID: 27056897 [TBL] [Abstract][Full Text] [Related]
15. Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion. Chen L; Xu B; Liu L; Liu C; Luo Y; Chen X; Barzegar M; Chung J; Huang S Oncotarget; 2015 Mar; 6(9):7136-50. PubMed ID: 25762619 [TBL] [Abstract][Full Text] [Related]
16. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Ye Q; Cai W; Zheng Y; Evers BM; She QB Oncogene; 2014 Apr; 33(14):1828-39. PubMed ID: 23624914 [TBL] [Abstract][Full Text] [Related]
17. Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Zhou X; Tan M; Stone Hawthorne V; Klos KS; Lan KH; Yang Y; Yang W; Smith TL; Shi D; Yu D Clin Cancer Res; 2004 Oct; 10(20):6779-88. PubMed ID: 15501954 [TBL] [Abstract][Full Text] [Related]
18. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Xu K; Wang L; Feng W; Feng Y; Shu HK Oncogene; 2016 Nov; 35(44):5807-5816. PubMed ID: 27065332 [TBL] [Abstract][Full Text] [Related]
19. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Bommer UA; Iadevaia V; Chen J; Knoch B; Engel M; Proud CG Cell Signal; 2015 Aug; 27(8):1557-68. PubMed ID: 25936523 [TBL] [Abstract][Full Text] [Related]
20. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. Wang L; Harris TE; Roth RA; Lawrence JC J Biol Chem; 2007 Jul; 282(27):20036-44. PubMed ID: 17510057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]