These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25961937)

  • 1. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant light scattering from a single dielectric nano-antenna formed by electron beam-induced deposition.
    Lee EK; Song JH; Jeong KY; Kang JH; Park HG; Seo MK
    Sci Rep; 2015 May; 5():10400. PubMed ID: 25988729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the Nanoscale Gap Morphology on the Plasmon Coupling in Asymmetric Nanoparticle Dimer Antennas.
    Popp PS; Herrmann JF; Fritz EC; Ravoo BJ; Höppener C
    Small; 2016 Mar; 12(12):1667-75. PubMed ID: 26849412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
    Olmon RL; Raschke MB
    Nanotechnology; 2012 Nov; 23(44):444001. PubMed ID: 23079849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.
    Zhang Q; Xiao JJ; Li M; Han D; Gao L
    Sci Rep; 2015 Nov; 5():17234. PubMed ID: 26611726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas.
    Collette R; Garfinkel DA; Hu Z; Masiello DJ; Rack PD
    Sci Rep; 2020 Jul; 10(1):12537. PubMed ID: 32719406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas.
    Křápek V; Koh AL; Břínek L; Hrtoň M; Tomanec O; Kalousek R; Maier SA; Šikola T
    Opt Express; 2015 May; 23(9):11855-67. PubMed ID: 25969276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroscopy.
    Flauraud V; Bernasconi GD; Butet J; Alexander DTL; Martin OJF; Brugger J
    ACS Nano; 2017 Apr; 11(4):3485-3495. PubMed ID: 28290663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic TM-like cavity modes and the hybridization in multilayer metal-dielectric nanoantenna.
    Zhang XM; Xiao JJ; Zhang Q; Li LM; Yao Y
    Opt Express; 2015 Jun; 23(12):16122-32. PubMed ID: 26193585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of suspended metal-dielectric-metal plasmonic nanostructures.
    Dong Z; Bosman M; Zhu D; Goh XM; Yang JK
    Nanotechnology; 2014 Apr; 25(13):135303. PubMed ID: 24598115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.
    Alber I; Sigle W; Müller S; Neumann R; Picht O; Rauber M; van Aken PA; Toimil-Molares ME
    ACS Nano; 2011 Dec; 5(12):9845-53. PubMed ID: 22077953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical coupling and extreme confinement in nanogap antennas.
    Emeric L; Deeb C; Pardo F; Pelouard JL
    Opt Lett; 2019 Oct; 44(19):4761-4764. PubMed ID: 31568436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution.
    Myroshnychenko V; Nishio N; García de Abajo FJ; Förstner J; Yamamoto N
    ACS Nano; 2018 Aug; 12(8):8436-8446. PubMed ID: 30067900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy.
    Li GC; Zhang YL; Lei DY
    Nanoscale; 2016 Apr; 8(13):7119-26. PubMed ID: 26962966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance in interacting Si nanoparticle chains.
    Wang J; Wang XJ; Jiao Y; Chu MW; Malac M; Li Q
    Nanoscale; 2010 May; 2(5):681-4. PubMed ID: 20648309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standing wave plasmon modes interact in an antenna-coupled nanowire.
    Day JK; Large N; Nordlander P; Halas NJ
    Nano Lett; 2015 Feb; 15(2):1324-30. PubMed ID: 25565116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
    Fu M; Qian L; Long H; Wang K; Lu P; Rakovich YP; Hetsch F; Susha AS; Rogach AL
    Nanoscale; 2014 Aug; 6(15):9192-7. PubMed ID: 24981883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.