These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 25962432)

  • 41. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C═O and C═C Bonds on Supported Noble Metal Catalysts.
    Meemken F; Baiker A
    Chem Rev; 2017 Sep; 117(17):11522-11569. PubMed ID: 28872309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Layered double hydroxides functionalized by carbonaceous materials: from preparation to energy and environmental applications.
    Lv D
    Environ Sci Pollut Res Int; 2022 May; 29(21):30865-30891. PubMed ID: 35094279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles.
    Yan W; Wang J; Ding J; Sun P; Zhang S; Shen J; Jin X
    Dalton Trans; 2019 Dec; 48(45):16827-16843. PubMed ID: 31646315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small-Sized Mg-Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation.
    Wang L; Wang Y; Wang X; Feng X; Ye X; Fu J
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29462941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions.
    Pritchard J; Filonenko GA; van Putten R; Hensen EJ; Pidko EA
    Chem Soc Rev; 2015 Jun; 44(11):3808-33. PubMed ID: 25941799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergic catalytic effects in confined spaces.
    Yu C; He J
    Chem Commun (Camb); 2012 May; 48(41):4933-40. PubMed ID: 22499416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of polysilane-supported palladium/alumina hybrid catalysts and their application to hydrogenation.
    Oyamada H; Naito T; Miyamoto S; Akiyama R; Hagio H; Kobayashi S
    Org Biomol Chem; 2008 Jan; 6(1):61-5. PubMed ID: 18075649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applications of Mechanochemically Prepared Layered Double Hydroxides as Adsorbents and Catalysts: A Mini-Review.
    Qu J; Sha L; Wu C; Zhang Q
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30626167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layered Double Hydroxides for Photo(electro)catalytic Applications: A Mini Review.
    Li C; Jing H; Wu Z; Jiang D
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aerobic reduction of olefins by in situ generation of diimide with synthetic flavin catalysts.
    Imada Y; Iida H; Kitagawa T; Naota T
    Chemistry; 2011 May; 17(21):5908-20. PubMed ID: 21495097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
    Yue H; Ma X; Gong J
    Acc Chem Res; 2014 May; 47(5):1483-92. PubMed ID: 24571103
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Waste-slag hydrocalumite and derivatives as heterogeneous base catalysts.
    Kuwahara Y; Tsuji K; Ohmichi T; Kamegawa T; Mori K; Yamashita H
    ChemSusChem; 2012 Aug; 5(8):1523-32. PubMed ID: 22730209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.
    Liu M; Fan G; Yu J; Yang L; Li F
    Dalton Trans; 2018 Apr; 47(15):5226-5235. PubMed ID: 29541716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intercalation of laminar Cu-Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO
    Zhao F; Zhan G; Zhou SF
    Nanoscale; 2020 Jun; 12(24):13145-13156. PubMed ID: 32584354
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controllable Modulation of Defects for Layered Double Hydroxide Nanosheets by Altering Intercalation Anions for Efficient Electrooxidation Catalysis.
    Lai T; Wang J; Sun X; Zhao Y; Song YF
    Chem Asian J; 2021 Dec; 16(23):3993-3998. PubMed ID: 34636154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.