These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25962754)

  • 21. Trial and error.
    Eshel N
    Science; 2016 Dec; 354(6316):1108-1109. PubMed ID: 27934726
    [No Abstract]   [Full Text] [Related]  

  • 22. Differential involvement of ventral tegmental GABA(A) and GABA(B) receptors in the regulation of the nucleus accumbens dopamine response to stress.
    Doherty M; Gratton A
    Brain Res; 2007 May; 1150():62-8. PubMed ID: 17395162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra.
    Gervais J; Rouillard C
    Synapse; 2000 Mar; 35(4):281-91. PubMed ID: 10657038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning.
    Zellner MR; Ranaldi R
    Neurosci Biobehav Rev; 2010 Apr; 34(5):769-80. PubMed ID: 19914285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Matching stimulation paradigms resolve apparent differences between optogenetic and electrical VTA stimulation.
    Weidner TC; Vincenz D; Brocka M; Tegtmeier J; Oelschlegel AM; Ohl FW; Goldschmidt J; Lippert MT
    Brain Stimul; 2020; 13(2):363-371. PubMed ID: 31812449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The influence of L-glutamate and carbachol on burst firing of dopaminergic neurons in ventral tegmental area].
    Wang SS; Wei CL; Liu ZQ; Ren W
    Sheng Li Xue Bao; 2011 Feb; 63(1):25-30. PubMed ID: 21340431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporary inactivation of ventral tegmental area neurons with either muscimol or baclofen reversibly disrupts maternal behavior in rats through different underlying mechanisms.
    Numan M; Stolzenberg DS; Dellevigne AA; Correnti CM; Numan MJ
    Behav Neurosci; 2009 Aug; 123(4):740-51. PubMed ID: 19634931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical control of VTA function and influence on nicotine reward.
    Wu J; Gao M; Shen JX; Shi WX; Oster AM; Gutkin BS
    Biochem Pharmacol; 2013 Oct; 86(8):1173-80. PubMed ID: 23933294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonspecific Expression in Limited Excitatory Cell Populations in Interneuron-Targeting Cre-driver Lines Can Have Large Functional Effects.
    Müller-Komorowska D; Opitz T; Elzoheiry S; Schweizer M; Ambrad Giovannetti E; Beck H
    Front Neural Circuits; 2020; 14():16. PubMed ID: 32395103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse.
    Lou S; Adam Y; Weinstein EN; Williams E; Williams K; Parot V; Kavokine N; Liberles S; Madisen L; Zeng H; Cohen AE
    J Neurosci; 2016 Oct; 36(43):11059-11073. PubMed ID: 27798186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic stimulation of DAergic VTA neurons increases aggression.
    Yu Q; Teixeira CM; Mahadevia D; Huang YY; Balsam D; Mann JJ; Gingrich JA; Ansorge MS
    Mol Psychiatry; 2014 Jun; 19(6):635. PubMed ID: 24847796
    [No Abstract]   [Full Text] [Related]  

  • 33. Neurocircuitry of Reward and Addiction: Potential Impact of Dopamine-Glutamate Co-release as Future Target in Substance Use Disorder.
    Bimpisidis Z; Wallén-Mackenzie Å
    J Clin Med; 2019 Nov; 8(11):. PubMed ID: 31698743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intersectional illumination of neural circuit function.
    Allen WE; Luo L
    Neuron; 2015 Mar; 85(5):889-92. PubMed ID: 25741716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals.
    Gompf HS; Budygin EA; Fuller PM; Bass CE
    Front Behav Neurosci; 2015; 9():152. PubMed ID: 26190981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optogenetics in neuroscience: what we gain from studies in mammals.
    Chen Q; Zeng Z; Hu Z
    Neurosci Bull; 2012 Aug; 28(4):423-34. PubMed ID: 22833040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-demand optogenetic activation of human stem-cell-derived neurons.
    Klapper SD; Sauter EJ; Swiersy A; Hyman MAE; Bamann C; Bamberg E; Busskamp V
    Sci Rep; 2017 Oct; 7(1):14450. PubMed ID: 29089561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep brain optogenetics without intracranial surgery.
    Chen R; Gore F; Nguyen QA; Ramakrishnan C; Patel S; Kim SH; Raffiee M; Kim YS; Hsueh B; Krook-Magnusson E; Soltesz I; Deisseroth K
    Nat Biotechnol; 2021 Feb; 39(2):161-164. PubMed ID: 33020604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Commentary: Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.
    Mayeli M; Rahmani F
    Front Behav Neurosci; 2017; 11():150. PubMed ID: 28848412
    [No Abstract]   [Full Text] [Related]  

  • 40. [Optogenetical approach to control the activity of specific types of neurons in vivo].
    Yamanaka A
    Nihon Yakurigaku Zasshi; 2012 Dec; 140(6):280-4. PubMed ID: 23229635
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.