These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25962825)

  • 1. Waste heat generation: A comprehensive review.
    Yeşiller N; Hanson JL; Yee EH
    Waste Manag; 2015 Aug; 42():166-79. PubMed ID: 25962825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of cesium in municipal solid waste incineration.
    Oshita K; Aoki H; Fukutani S; Shiota K; Fujimori T; Takaoka M
    J Environ Radioact; 2015 May; 143():1-6. PubMed ID: 25697082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.
    Ribé V; Nehrenheim E; Odlare M
    Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possibilities of municipal solid waste incinerator fly ash utilisation.
    Hartmann S; Koval L; Škrobánková H; Matýsek D; Winter F; Purgar A
    Waste Manag Res; 2015 Aug; 33(8):740-7. PubMed ID: 26060198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mass Proportion of Municipal Solid Waste Incinerator Bottom Ash Layer to Municipal Solid Waste Layer on the Cu and Zn Discharge from Landfill.
    Kong Q; Yao J; Qiu Z; Shen D
    Biomed Res Int; 2016; 2016():9687879. PubMed ID: 28044139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat management strategies for MSW landfills.
    Yeşiller N; Hanson JL; Kopp KB; Yee EH
    Waste Manag; 2016 Oct; 56():246-54. PubMed ID: 27462028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.
    Karagiannidis A; Kontogianni S; Logothetis D
    Waste Manag; 2013 Feb; 33(2):363-72. PubMed ID: 23206519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.
    Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F
    Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incinerator ash characterization - Implications for elevated temperature landfills.
    Villarruel-Moore A; Reinhart D; Sohn Y
    Waste Manag; 2022 Nov; 153():72-80. PubMed ID: 36055177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation and distribution of PAHs in the process of medical waste incineration.
    Chen Y; Zhao R; Xue J; Li J
    Waste Manag; 2013 May; 33(5):1165-73. PubMed ID: 23462270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for salts removal from municipal solid waste incineration fly ash through the molten salt thermal treatment.
    Xie K; Hu H; Cao J; Yang F; Liu H; Li A; Yao H
    Chemosphere; 2020 Feb; 241():125107. PubMed ID: 31683450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.
    Alhadj-Mallah MM; Huang Q; Cai X; Chi Y; Yan J
    Environ Technol; 2015; 36(5-8):654-60. PubMed ID: 25220259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?
    Sormunen LA; Rantsi R
    Waste Manag Res; 2015 Nov; 33(11):995-1004. PubMed ID: 26330401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices.
    Lu CH; Chuang KH
    Environ Technol; 2016; 37(3):399-406. PubMed ID: 26226945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment and distribution of 24 elements within the sub-sieve particle size distribution ranges of fly ash from wastes incinerator plants.
    Raclavská H; Corsaro A; Hartmann-Koval S; Juchelková D
    J Environ Manage; 2017 Dec; 203(Pt 3):1169-1177. PubMed ID: 28389102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.
    Santos RM; Mertens G; Salman M; Cizer Ö; Van Gerven T
    J Environ Manage; 2013 Oct; 128():807-21. PubMed ID: 23867838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.
    Tang Z; Chen X; Liu D; Zhuang Y; Ye M; Sheng H; Xu S
    J Environ Sci (China); 2016 Oct; 48():169-178. PubMed ID: 27745662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific heat and thermal conductivity of municipal solid waste and its effect on landfill fires.
    Manjunatha GS; Chavan D; Lakshmikanthan P; Singh L; Kumar S; Kumar R
    Waste Manag; 2020 Oct; 116():120-130. PubMed ID: 32795643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of thermal properties of municipal solid waste landfills.
    Faitli J; Magyar T; Erdélyi A; Murányi A
    Waste Manag; 2015 Feb; 36():213-21. PubMed ID: 25464944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements.
    Cristelo N; Segadães L; Coelho J; Chaves B; Sousa NR; de Lurdes Lopes M
    Waste Manag; 2020 Mar; 104():60-73. PubMed ID: 31962218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.