These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25962836)

  • 1. Hybrid position/force control of an active handheld micromanipulator for membrane peeling.
    Wells TS; Yang S; MacLachlan RA; Lobes LA; Martel JN; Riviere CN
    Int J Med Robot; 2016 Mar; 12(1):85-95. PubMed ID: 25962836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robot assisted stapedotomy ex vivo with an active handheld instrument.
    Vendrametto T; McAfee JS; Hirsch BE; Riviere CN; Ferrigno G; De Momi E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4879-82. PubMed ID: 26737386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Handheld-automated microsurgical instrumentation for intraocular laser surgery.
    Yang S; Lobes LA; Martel JN; Riviere CN
    Lasers Surg Med; 2015 Oct; 47(8):658-68. PubMed ID: 26287813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
    He X; Gehlbach P; Handa J; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6859-63. PubMed ID: 25571572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human eye phantom for developing computer and robot-assisted epiretinal membrane peeling.
    Gupta A; Gonenc B; Balicki M; Olds K; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6864-7. PubMed ID: 25571573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Hybrid Position/Force Control for an Active Handheld Micromanipulator.
    Wells TS; MacLachlan RA; Riviere CN
    IEEE Int Conf Robot Autom; 2014 May; 2014():772-777. PubMed ID: 26405560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary study of an RNN-based active interventional robotic system (AIRS) in retinal microsurgery.
    He C; Patel N; Ebrahimi A; Kobilarov M; Iordachita I
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):945-954. PubMed ID: 30887423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motorized Force-Sensing Micro-Forceps with Tremor Cancelling and Controlled Micro-Vibrations for Easier Membrane Peeling.
    Gonenc B; Gehlbach P; Handa J; Taylor RH; Iordachita I
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2014 Aug; 2014():244-251. PubMed ID: 25544965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic interface for robot-assisted ophthalmic surgery.
    Barthel A; Trematerra D; Nasseri MA; Zapp D; Lohmann CP; Knoll A; Maier M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4906-9. PubMed ID: 26737392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Micro-Force Sensing Handheld Robot for Vitreoretinal Surgery.
    Gonenc B; Balicki MA; Handa J; Gehlbach P; Riviere CN; Taylor RH; Iordachita I
    Rep U S; 2012 Dec; 2012():4125-4130. PubMed ID: 23378934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
    Horise Y; He X; Gehlbach P; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():13-6. PubMed ID: 26736189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic Retinal Surgery Impacts on Scleral Forces: In Vivo Study.
    Urias MG; Patel N; Ebrahimi A; Iordachita I; Gehlbach PL
    Transl Vis Sci Technol; 2020 Sep; 9(10):2. PubMed ID: 32953242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Robot-Assisted Vitreoretinal Surgery: Force-Sensing Micro-Forceps Integrated with a Handheld Micromanipulator.
    Gonenc B; Feldman E; Gehlbach P; Handa J; Taylor RH; Iordachita I
    IEEE Int Conf Robot Autom; 2014 May; 2014():1399-1404. PubMed ID: 25401003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated with a Handheld Micromanipulator
    Gonenc B; Chae J; Gehlbach P; Taylor RH; Iordachita I
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a 6-degree-of-freedom active microsurgical manipulator in handheld tasks.
    Yang S; Wells TS; Maclachlan RA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5670-3. PubMed ID: 24111024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiautomated intraocular laser surgery using handheld instruments.
    Becker BC; MacLachlan RA; Lobes LA; Riviere CN
    Lasers Surg Med; 2010 Mar; 42(3):264-73. PubMed ID: 20333740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active guidance for laser retinal surgery with a handheld instrument.
    Becker BC; Valdivieso CR; Biswas J; Lobes LA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5587-90. PubMed ID: 19964133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force sensing micro-forceps for robot assisted retinal surgery.
    Kuru I; Gonenc B; Balicki M; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1401-4. PubMed ID: 23366162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motorized teleguided stereotactic micromanipulator for vitreous microsurgery.
    Spitznas M
    Arch Ophthalmol; 1983 Apr; 101(4):623-30. PubMed ID: 6838423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A force-sensing microsurgical instrument that detects forces below human tactile sensation.
    Sunshine S; Balicki M; He X; Olds K; Kang JU; Gehlbach P; Taylor R; Iordachita I; Handa JT
    Retina; 2013 Jan; 33(1):200-6. PubMed ID: 22810149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.