These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25962836)

  • 21. The Role of Haptic Feedback in Robotic-Assisted Retinal Microsurgery Systems: A Systematic Review.
    Griffin JA; Zhu W; Nam CS
    IEEE Trans Haptics; 2017; 10(1):94-105. PubMed ID: 28328500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation.
    Ourak M; Smits J; Esteveny L; Borghesan G; Gijbels A; Schoevaerdts L; Douven Y; Scholtes J; Lankenau E; Eixmann T; Schulz-Hildebrandt H; Hüttmann G; Kozlovszky M; Kronreif G; Willekens K; Stalmans P; Faridpooya K; Cereda M; Giani A; Staurenghi G; Reynaerts D; Vander Poorten EB
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):301-309. PubMed ID: 30056592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acousto-optic compensation of tremor for use in a handheld laser microsurgical instrument.
    Cernat R; Matei CE; Olteanu L; Riviere CN; Dumitraş DC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3862-4. PubMed ID: 17947056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures.
    Becker BC; Maclachlan RA; Lobes LA; Hager GD; Riviere CN
    IEEE Trans Robot; 2013 Feb; 29(3):674-683. PubMed ID: 24639624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward Improving Safety in Neurosurgery with an Active Handheld Instrument.
    Moccia S; Foti S; Routray A; Prudente F; Perin A; Sekula RF; Mattos LS; Balzer JR; Fellows-Mayle W; De Momi E; Riviere CN
    Ann Biomed Eng; 2018 Oct; 46(10):1450-1464. PubMed ID: 30014286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hand-Held Instrument with Integrated Parallel Mechanism for Active Tremor Compensation During Microsurgery.
    Zhang T; Gong L; Wang S; Zuo S
    Ann Biomed Eng; 2020 Jan; 48(1):413-425. PubMed ID: 31531791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robot-assisted tremor control for performance enhancement of retinal microsurgeons.
    Roizenblatt M; Grupenmacher AT; Belfort Junior R; Maia M; Gehlbach PL
    Br J Ophthalmol; 2019 Aug; 103(8):1195-1200. PubMed ID: 30573495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Handheld micromanipulator for robot-assisted stapes footplate surgery.
    Montes Grande G; Knisely AJ; Becker BC; Yang S; Hirsch BE; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1422-5. PubMed ID: 23366167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Position-Based Virtual Fixtures for Membrane Peeling with a Handheld Micromanipulator.
    Becker BC; Maclachlan RA; Lobes LA; Riviere CN
    IEEE Int Conf Robot Autom; 2012 Dec; 2012():1075-1080. PubMed ID: 24724041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forces exerted during microneurosurgery: a cadaver study.
    Marcus HJ; Zareinia K; Gan LS; Yang FW; Lama S; Yang GZ; Sutherland GR
    Int J Med Robot; 2014 Jun; 10(2):251-6. PubMed ID: 24431265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 'The Microhand': a new concept of micro-forceps for ocular robotic surgery.
    Hubschman JP; Bourges JL; Choi W; Mozayan A; Tsirbas A; Kim CJ; Schwartz SD
    Eye (Lond); 2010 Feb; 24(2):364-7. PubMed ID: 19300461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Micro-Vibratory Modulation during Robot-Assisted Membrane Peeling.
    Gonenc B; Gehlbach P; Taylor RH; Iordachita I
    Rep U S; 2015; 2015():3811-3816. PubMed ID: 27110431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Safe Tissue Manipulation in Retinal Microsurgery via Motorized Instruments with Force Sensing.
    Gonenc B; Gehlbach P; Taylor RH; Iordachita I
    Proc IEEE Sens; 2017; 2017():. PubMed ID: 29805723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Evaluation of a Micro-Manipulator for Middle Ear Surgery: A Preclinical Trial].
    Peschka A; Berger T; Maier T; Scholz M; Lüth TC; Strauß G
    Laryngorhinootologie; 2016 Feb; 95(2):112-7. PubMed ID: 25901486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of using the potassium titanyl phosphate laser with micromanipulators in robotic neurosurgery: a preliminary study in the rat.
    Goto T; Hongo K; Koyama J; Kobayashi S
    J Neurosurg; 2003 Jan; 98(1):131-5. PubMed ID: 12546361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.
    Braun D; Yang S; Martel JN; Riviere CN; Becker BC
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28719002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robot-assisted retinal vein cannulation with force-based puncture detection: Micron vs. the steady-hand eye robot.
    Gonenc B; Tran N; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5107-5111. PubMed ID: 28269417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Test of tracing performance with an active handheld micromanipulator.
    Choi DY; Sandoval R; MacLachlan RA; Ho L; Lobes LA; Riviere CN
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3638-41. PubMed ID: 18002785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study.
    Ebrahimi A; Urias MG; Patel N; Taylor RH; Gehlbach P; Iordachita I
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3356-3365. PubMed ID: 33822717
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.