BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1151 related articles for article (PubMed ID: 25962978)

  • 1. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure.
    Greco CM; Condorelli G
    Nat Rev Cardiol; 2015 Aug; 12(8):488-97. PubMed ID: 25962978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin modifications remodel cardiac gene expression.
    Mathiyalagan P; Keating ST; Du XJ; El-Osta A
    Cardiovasc Res; 2014 Jul; 103(1):7-16. PubMed ID: 24812277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy.
    Dong Y; Xu S; Liu J; Ponnusamy M; Zhao Y; Zhang Y; Wang Q; Li P; Wang K
    Int J Biol Sci; 2018; 14(9):1133-1141. PubMed ID: 29989099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic regulation in heart failure: part II DNA and chromatin.
    DiSalvo TG
    Cardiol Rev; 2015; 23(6):269-81. PubMed ID: 26135900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging roles of non-coding RNAs in epigenetic regulation.
    Chen J; Xue Y
    Sci China Life Sci; 2016 Mar; 59(3):227-35. PubMed ID: 26825947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis.
    Tao H; Yang JJ; Shi KH
    Expert Opin Ther Targets; 2015 May; 19(5):707-16. PubMed ID: 25652534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early adaptive chromatin remodeling events precede pathologic phenotypes and are reinforced in the failing heart.
    Chapski DJ; Cabaj M; Morselli M; Mason RJ; Soehalim E; Ren S; Pellegrini M; Wang Y; Vondriska TM; Rosa-Garrido M
    J Mol Cell Cardiol; 2021 Nov; 160():73-86. PubMed ID: 34273410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Readers, writers, and erasers: chromatin as the whiteboard of heart disease.
    Gillette TG; Hill JA
    Circ Res; 2015 Mar; 116(7):1245-53. PubMed ID: 25814685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer.
    Xiao Y; Su M; Ou W; Wang H; Tian B; Ma J; Tang J; Wu J; Wu Z; Wang W; Zhou Y
    Biomed Pharmacother; 2019 Sep; 117():109192. PubMed ID: 31387188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics of Aberrant Cardiac Wound Healing.
    Russell-Hallinan A; Watson CJ; Baugh JA
    Compr Physiol; 2018 Mar; 8(2):451-491. PubMed ID: 29687888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease.
    Hulshoff MS; Xu X; Krenning G; Zeisberg EM
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):1986-1996. PubMed ID: 30354260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding liver injury: A regulatory role for histone modifications.
    Tian W; Xu Y
    Int J Biochem Cell Biol; 2015 Oct; 67():188-93. PubMed ID: 25801055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture.
    McKinsey TA; Vondriska TM; Wang Y
    F1000Res; 2018; 7():. PubMed ID: 30416708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications.
    Lu J; Huang Y; Zhang X; Xu Y; Nie S
    Pharmacol Res; 2021 Aug; 170():105520. PubMed ID: 33639232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into epigenetic modifications in heart failure.
    Li Y; Du W; Zhao R; Hu J; Li H; Han R; Yue Q; Wu R; Li W; Zhao J
    Front Biosci (Landmark Ed); 2017 Jan; 22(2):230-247. PubMed ID: 27814613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin proteomics and epigenetic regulatory circuits.
    Bönisch C; Nieratschker SM; Orfanos NK; Hake SB
    Expert Rev Proteomics; 2008 Feb; 5(1):105-19. PubMed ID: 18282127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of demethylases in cardiac development and disease.
    Davis K; Azarcon P; Hickenlooper S; Bia R; Horiuchi E; Szulik MW; Franklin S
    J Mol Cell Cardiol; 2021 Sep; 158():89-100. PubMed ID: 34081951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic regulation and heart failure.
    Cao DJ
    Expert Rev Cardiovasc Ther; 2014 Sep; 12(9):1087-98. PubMed ID: 25047512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress.
    Awad S; Al-Haffar KM; Marashly Q; Quijada P; Kunhi M; Al-Yacoub N; Wade FS; Mohammed SF; Al-Dayel F; Sutherland G; Assiri A; Sussman M; Bers D; Al-Habeeb W; Poizat C
    J Pathol; 2015 Mar; 235(4):606-18. PubMed ID: 25421395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 58.