BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25963028)

  • 41. Dual aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer.
    Jo H; Her J; Ban C
    Biosens Bioelectron; 2015 Sep; 71():129-136. PubMed ID: 25897882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates.
    Borsa BA; Tuna BG; Hernandez FJ; Hernandez LI; Bayramoglu G; Arica MY; Ozalp VC
    Biosens Bioelectron; 2016 Dec; 86():27-32. PubMed ID: 27318566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple amplification-based fluorometric aptasensor for highly sensitive detection of Staphylococcus aureus.
    Chen W; Zhang Y; Lai Q; Li Y; Liu Z
    Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6733-6743. PubMed ID: 36058939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection.
    Wei Y; Tao Z; Wan L; Zong C; Wu J; Tan X; Wang B; Guo Z; Zhang L; Yuan H; Wang P; Yang Z; Wan Y
    Biosens Bioelectron; 2022 Sep; 211():114282. PubMed ID: 35597144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amplified fluorescence polarization aptasensors based on structure-switching-triggered nanoparticles enhancement for bioassays.
    Huang Y; Zhao S; Chen ZF; Shi M; Liang H
    Chem Commun (Camb); 2012 Aug; 48(60):7480-2. PubMed ID: 22728954
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Femtomolar Detection of Lipopolysaccharide in Injectables and Serum Samples Using Aptamer-Coupled Reduced Graphene Oxide in a Continuous Injection-Electrostacking Biochip.
    Niu J; Hu X; Ouyang W; Chen Y; Liu S; Han J; Liu L
    Anal Chem; 2019 Feb; 91(3):2360-2367. PubMed ID: 30576605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasensitive detection of Staphylococcus aureus using a non-fluorescent cDNA-grafted dark BBQ®-650 chromophore integrated hydrophilic upconversion nanoparticles/aptamer system.
    Ahmad W; Wang L; Zareef M; Chen Q
    Mikrochim Acta; 2023 Jun; 190(7):250. PubMed ID: 37278765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.
    Lu L; Qian Y; Wang L; Ma K; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1944-50. PubMed ID: 24480015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Upconversion Nanoprobes Based on a Horseradish Peroxidase-Regulated Dual-Mode Strategy for the Ultrasensitive Detection of
    Ouyang Q; Wang L; Ahmad W; Yang Y; Chen Q
    J Agric Food Chem; 2021 Sep; 69(34):9947-9956. PubMed ID: 34406747
    [No Abstract]   [Full Text] [Related]  

  • 51. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor.
    Kang L; Yang B; Zhang X; Cui L; Meng H; Mei L; Wu C; Ren S; Tan W
    Anal Chim Acta; 2015 Jun; 879():91-6. PubMed ID: 26002482
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite.
    Zhu Y; Chandra P; Song KM; Ban C; Shim YB
    Biosens Bioelectron; 2012; 36(1):29-34. PubMed ID: 22542925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles.
    Xie L; You L; Cao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 109():110-5. PubMed ID: 23501724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.
    Moon J; Kim G; Lee S; Park S
    J Microbiol Methods; 2013 Nov; 95(2):162-6. PubMed ID: 23978634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer.
    Lv Z; Liu J; Bai W; Yang S; Chen A
    Biosens Bioelectron; 2015 Feb; 64():530-4. PubMed ID: 25310484
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles.
    Lin TE; Chen WH; Shiang YC; Huang CC; Chang HT
    Biosens Bioelectron; 2011 Nov; 29(1):204-9. PubMed ID: 21900002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aptamer-based impedimetric sensor for bacterial typing.
    Labib M; Zamay AS; Kolovskaya OS; Reshetneva IT; Zamay GS; Kibbee RJ; Sattar SA; Zamay TN; Berezovski MV
    Anal Chem; 2012 Oct; 84(19):8114-7. PubMed ID: 22971146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A label-free electrochemical biosensor based on a DNA aptamer against codeine.
    Huang L; Yang X; Qi C; Niu X; Zhao C; Zhao X; Shangguan D; Yang Y
    Anal Chim Acta; 2013 Jul; 787():203-10. PubMed ID: 23830440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement.
    Li W; Dong Y; Wang X; Li H; Xu D
    Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.