BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 25963297)

  • 1. The effect of working time on the displacement of Biodentine
    Dawood AE; Manton DJ; Parashos P; Wong RH
    J Investig Clin Dent; 2016 Nov; 7(4):391-395. PubMed ID: 25963297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of retentive groove, sandblasting and cement type on the retentive strength of stainless steel crowns in primary second molars--an in vitro comparative study.
    Veerabadhran MM; Reddy V; Nayak UA; Rao AP; Sundaram MA
    J Indian Soc Pedod Prev Dent; 2012; 30(1):19-26. PubMed ID: 22565513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microleakage of adhesive and nonadhesive luting cements for stainless steel crowns.
    Memarpour M; Mesbahi M; Rezvani G; Rahimi M
    Pediatr Dent; 2011; 33(7):501-4. PubMed ID: 22353410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Overlying Material on Final Setting of Biodentine ® in Primary Molar Pulpotomies.
    Pham CL; Kratunova E; Marion I; da Fonseca MA; Alapati SB
    Pediatr Dent; 2019 Mar; 41(2):140-145. PubMed ID: 30992113
    [No Abstract]   [Full Text] [Related]  

  • 5. Hall versus conventional stainless steel crown techniques: in vitro investigation of marginal fit and microleakage using three different luting agents.
    Erdemci ZY; Cehreli SB; Tirali RE
    Pediatr Dent; 2014; 36(4):286-90. PubMed ID: 25197992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium enriched mixture cement for primary molars exhibiting root perforations and extensive root resorption: report of three cases.
    Tavassoli-Hojjati S; Kameli S; Rahimian-Emam S; Ahmadyar M; Asgary S
    Pediatr Dent; 2014; 36(1):23E-27E. PubMed ID: 24717704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microleakage of stainless steel crowns placed on intact and extensively destroyed primary first molars: an in vitro study.
    Seraj B; Shahrabi M; Motahari P; Ahmadi R; Ghadimi S; Mosharafian S; Mohammadi K; Javad Kharazifard M
    Pediatr Dent; 2011; 33(7):525-8. PubMed ID: 22353415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of shear bond strength and microleakage of tricalcium silicate-based restorative material and radioopaque posterior glass ionomer restorative cement in primary and permanent teeth: an in vitro study.
    Raju VG; Venumbaka NR; Mungara J; Vijayakumar P; Rajendran S; Elangovan A
    J Indian Soc Pedod Prev Dent; 2014; 32(4):304-10. PubMed ID: 25231038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Sandblasting and Type of Cement on the Bond Strength of Molar Bands on Stainless Steel Crowns.
    Bawazir OA; Elaraby A; Alshamrani H; Salama FS
    J Dent Child (Chic); 2015; 82(2):64-9. PubMed ID: 26349792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preformed posterior stainless steel crowns: an update.
    Croll TP
    Compend Contin Educ Dent; 1999 Feb; 20(2):89-92, 94-6, 98-100 passim; quiz 106. PubMed ID: 11692330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of retention and marginal seating of Ni-Cr alloy cast restorations using three different luting cements: an in vitro study.
    Pattanaik BK; Nagda SJ
    Indian J Dent Res; 2012; 23(1):20-5. PubMed ID: 22842244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture resistance of 3 types of primary esthetic stainless steel crowns.
    Beattie S; Taskonak B; Jones J; Chin J; Sanders B; Tomlin A; Weddell J
    J Can Dent Assoc; 2011; 77():b90. PubMed ID: 21736864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the amount of excess cement around the margins of cement-retained dental implant restorations: the effect of the cement application method.
    Chee WW; Duncan J; Afshar M; Moshaverinia A
    J Prosthet Dent; 2013 Apr; 109(4):216-21. PubMed ID: 23566601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cement, cement space, marginal design, seating aid materials, and seating force on crown cementation.
    Wang CJ; Millstein PL; Nathanson D
    J Prosthet Dent; 1992 Jun; 67(6):786-90. PubMed ID: 1403860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microhardness and sealing ability of materials used for root canal perforations.
    Camargo CH; Fonseca MB; Carvalho AS; Camargo SE; Cardoso FG; Valera MC
    Gen Dent; 2012; 60(6):e393-7. PubMed ID: 23220318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioactive dental luting cement--its retentive properties and 3-year clinical findings.
    Jefferies SR; Pameijer CH; Appleby DC; Boston D; Lööf J
    Compend Contin Educ Dent; 2013 Feb; 34 Spec No 1():2-9. PubMed ID: 23577551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and clinical outcome of sandwich restorations with a bulk-fill flowable composite liner for pulpotomized primary teeth.
    Cantekin K; Gumus H
    J Clin Pediatr Dent; 2014; 38(4):349-54. PubMed ID: 25571688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Success rate of calcium hydroxide pulpotomy in primary molars restored with amalgam and stainless steel crowns.
    Sonmez D; Duruturk L
    Br Dent J; 2010 May; 208(9):E18; discussion 408-9. PubMed ID: 20448584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of retentive strengths of zinc phosphate, polycarboxylate and glass ionomer cements with stainless steel crowns--an in vitro study.
    Reddy R; Basappa N; Reddy VV
    J Indian Soc Pedod Prev Dent; 1998 Mar; 16(1):9-11. PubMed ID: 11813717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of seating force, margin design, and cement on marginal seal and retention of complete metal crowns.
    Piemjai M
    Int J Prosthodont; 2001; 14(5):412-6. PubMed ID: 12066634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.