These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms. Alkawareek MY; Algwari QT; Gorman SP; Graham WG; O'Connell D; Gilmore BF FEMS Immunol Med Microbiol; 2012 Jul; 65(2):381-4. PubMed ID: 22329678 [TBL] [Abstract][Full Text] [Related]
7. Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens. Lowrence RC; Ramakrishnan A; Sundaramoorthy NS; Shyam A; Mohan V; Subbarao HMV; Ulaganathan V; Raman T; Solomon A; Nagarajan S J Appl Microbiol; 2018 Feb; 124(2):408-422. PubMed ID: 29178633 [TBL] [Abstract][Full Text] [Related]
8. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells. Brunati C; Thomsen TT; Gaspari E; Maffioli S; Sosio M; Jabes D; Løbner-Olesen A; Donadio S J Antimicrob Chemother; 2018 Feb; 73(2):414-424. PubMed ID: 29092042 [TBL] [Abstract][Full Text] [Related]
9. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. Ermolaeva SA; Varfolomeev AF; Chernukha MY; Yurov DS; Vasiliev MM; Kaminskaya AA; Moisenovich MM; Romanova JM; Murashev AN; Selezneva II; Shimizu T; Sysolyatina EV; Shaginyan IA; Petrov OF; Mayevsky EI; Fortov VE; Morfill GE; Naroditsky BS; Gintsburg AL J Med Microbiol; 2011 Jan; 60(Pt 1):75-83. PubMed ID: 20829396 [TBL] [Abstract][Full Text] [Related]
10. One-year surveillance of ESKAPE pathogens in an intensive care unit of Monterrey, Mexico. Llaca-Díaz JM; Mendoza-Olazarán S; Camacho-Ortiz A; Flores S; Garza-González E Chemotherapy; 2012; 58(6):475-81. PubMed ID: 23548324 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the bactericidal effect of cold atmospheric pressure plasma (CAPP), antimicrobial photodynamic therapy (aPDT), and polihexanide (PHX) in a novel wet surface model to mimic oral cavity application. Hafner S; Ehrenfeld M; Neumann AC; Wieser A J Craniomaxillofac Surg; 2018 Dec; 46(12):2197-2202. PubMed ID: 30316654 [TBL] [Abstract][Full Text] [Related]
12. Progress and challenges in implementing the research on ESKAPE pathogens. Rice LB Infect Control Hosp Epidemiol; 2010 Nov; 31 Suppl 1():S7-10. PubMed ID: 20929376 [TBL] [Abstract][Full Text] [Related]
13. Clinical relevance of the ESKAPE pathogens. Pendleton JN; Gorman SP; Gilmore BF Expert Rev Anti Infect Ther; 2013 Mar; 11(3):297-308. PubMed ID: 23458769 [TBL] [Abstract][Full Text] [Related]
14. Differential anti-microbial secondary metabolites in different ESKAPE pathogens explain their adaptation in the hospital setup. Tiwari V; Meena K; Tiwari M Infect Genet Evol; 2018 Dec; 66():57-65. PubMed ID: 30227225 [TBL] [Abstract][Full Text] [Related]
19. Polyhexamethylene guanidine hydrochloride shows bactericidal advantages over chlorhexidine digluconate against ESKAPE bacteria. Zhou Z; Wei D; Lu Y Biotechnol Appl Biochem; 2015; 62(2):268-74. PubMed ID: 24888899 [TBL] [Abstract][Full Text] [Related]
20. ESKAPEing the labyrinth of antibacterial discovery. Tommasi R; Brown DG; Walkup GK; Manchester JI; Miller AA Nat Rev Drug Discov; 2015 Aug; 14(8):529-42. PubMed ID: 26139286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]