BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25963549)

  • 1. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation.
    Bildziukevich U; Vida N; Rárová L; Kolář M; Šaman D; Havlíček L; Drašar P; Wimmer Z
    Steroids; 2015 Aug; 100():27-35. PubMed ID: 25963549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial properties of amine- and guanidine-functionalized derivatives of betulinic, ursolic and oleanolic acids: Synthesis and structure/activity evaluation.
    Spivak AY; Khalitova RR; Nedopekina DA; Gubaidullin RR
    Steroids; 2020 Feb; 154():108530. PubMed ID: 31678136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity and phytochemical analysis of Vochysia divergens (Vochysiaceae).
    Hess SC; Brum RL; Honda NK; Cruz AB; Moretto E; Cruz RB; Messana I; Ferrari F; Cechinel Filho V; Yunes RA
    J Ethnopharmacol; 1995 Jul; 47(2):97-100. PubMed ID: 7500642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine amides of selected triterpenoid acids: dynamic supramolecular system formation influences the cytotoxicity of the drugs.
    Bildziukevich U; Malík M; Özdemir Z; Rárová L; Janovská L; Šlouf M; Šaman D; Šarek J; Nonappa ; Wimmer Z
    J Mater Chem B; 2020 Jan; 8(3):484-491. PubMed ID: 31834347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid.
    Oloyede HOB; Ajiboye HO; Salawu MO; Ajiboye TO
    Microb Pathog; 2017 Oct; 111():338-344. PubMed ID: 28807773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro.
    Bildziukevich U; Rárová L; Janovská L; Šaman D; Wimmer Z
    Steroids; 2019 Aug; 148():91-98. PubMed ID: 31022408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triterpene Derivatives as Relevant Scaffold for New Antibiofilm Drugs.
    Silva GNSD; Primon-Barros M; Macedo AJ; Gnoatto SCB
    Biomolecules; 2019 Feb; 9(2):. PubMed ID: 30754716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kaempferol triglycoside from Tephrosia preussii Taub. (Fabaceae).
    Mba Nguekeu YM; Awouafack MD; Tane P; Nguedia Lando MR; Kodama T; Morita H
    Nat Prod Res; 2017 Nov; 31(21):2520-2526. PubMed ID: 28403640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triterpenes from Euphorbia hirta and their cytotoxicity.
    Ragasa CY; Cornelio KB
    Chin J Nat Med; 2013 Sep; 11(5):528-33. PubMed ID: 24359779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphiphilic derivatives of (3β,17β)-3-hydroxyandrost-5-ene-17-carboxylic acid.
    Özdemir Z; Bildziukevich U; Šaman D; Havlíček L; Rárová L; Navrátilová L; Wimmer Z
    Steroids; 2017 Dec; 128():58-67. PubMed ID: 29100780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial and cytotoxic triterpenoids from the roots of Combretum racemosum.
    Gossan DP; Alabdul Magid A; Yao-Kouassi PA; Josse J; Gangloff SC; Morjani H; Voutquenne-Nazabadioko L
    Fitoterapia; 2016 Apr; 110():89-95. PubMed ID: 26946378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety.
    Bazine I; Bendjedid S; Boukhari A
    Arch Pharm (Weinheim); 2021 Mar; 354(3):e2000291. PubMed ID: 33283901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes.
    Fontanay S; Grare M; Mayer J; Finance C; Duval RE
    J Ethnopharmacol; 2008 Nov; 120(2):272-6. PubMed ID: 18835348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives.
    Zhang TY; Yu ZK; Jin XJ; Li MY; Sun LP; Zheng CJ; Piao HR
    Bioorg Med Chem Lett; 2018 May; 28(9):1657-1662. PubMed ID: 29588213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibacterial activities of the methanol extracts, fractions and compounds from Harungana madagascariensis Lam. ex Poir. (Hypericaceae).
    Tankeo SB; Damen F; Sandjo LP; Celik I; Tane P; Kuete V
    J Ethnopharmacol; 2016 Aug; 190():100-5. PubMed ID: 27267830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids.
    Kazakova OB; Giniyatullina GV; Mustafin AG; Babkov DA; Sokolova EV; Spasov AA
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine conjugates of stigmasterol.
    Vida N; Svobodová H; Rárová L; Drašar P; Saman D; Cvačka J; Wimmer Z
    Steroids; 2012 Oct; 77(12):1212-8. PubMed ID: 22850319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydro-beta-agarofuran sesquiterpenes and pentacyclic triterpenoids from the root bark of Osyris lanceolata.
    Yeboah EM; Majinda RR; Kadziola A; Muller A
    J Nat Prod; 2010 Jun; 73(6):1151-5. PubMed ID: 20499922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential targets by pentacyclic triterpenoids from Callicarpa farinosa against methicillin-resistant and sensitive Staphylococcus aureus.
    Chung PY; Chung LY; Navaratnam P
    Fitoterapia; 2014 Apr; 94():48-54. PubMed ID: 24508863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Cytotoxic, and Antibacterial Evaluation of Quinazolinone Derivatives with Substituted Amino Moiety.
    Zhan X; Xu Y; Qi Q; Wang Y; Shi H; Mao Z
    Chem Biodivers; 2018 Mar; 15(3):e1700513. PubMed ID: 29333734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.