BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 25964179)

  • 21. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms.
    Tang J; Chen Q; Xu L; Zhang S; Feng L; Cheng L; Xu H; Liu Z; Peng R
    ACS Appl Mater Interfaces; 2013 May; 5(9):3867-74. PubMed ID: 23586616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Zn/Al layered double hydroxide and carboxymethyl cellulose composite beads as support for the catalytic gold nanoparticles and their applications in the reduction of nitroarenes.
    Khalil A; Khan A; Kamal T; Khan AAP; Khan SB; Chani MTS; Alzahrani KA; Ali N
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):129986. PubMed ID: 38360231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity.
    Huang M; Chen F; Jiang Z; Li Y
    Int J Biol Macromol; 2013 Nov; 62():608-13. PubMed ID: 24141071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel-porous-Ag0 nanocomposite hydrogels via green process for advanced antibacterial applications.
    Vimala K; Kanny K; Varaprasad K; Kumar NM; Reddy GS
    J Biomed Mater Res A; 2014 Dec; 102(12):4616-24. PubMed ID: 24677385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect.
    Bardajee GR; Hooshyar Z; Rezanezhad H
    J Inorg Biochem; 2012 Dec; 117():367-73. PubMed ID: 22818024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of uniform-sized chitosan/silver microspheres with antibacterial activities.
    An J; Ji Z; Wang D; Luo Q; Li X
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():33-41. PubMed ID: 24433884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents.
    Poyraz S; Cerkez I; Huang TS; Liu Z; Kang L; Luo J; Zhang X
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20025-34. PubMed ID: 25365660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.
    Ghosh S; Saraswathi A; Indi SS; Hoti SL; Vasan HN
    Langmuir; 2012 Jun; 28(22):8550-61. PubMed ID: 22582868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of novel protein-Ag nanocomposite for drug delivery and inactivation of bacterial applications.
    Vimala K; Varaprasad K; Sadiku R; Ramam K; Kanny K
    Int J Biol Macromol; 2014 Feb; 63():75-82. PubMed ID: 24183809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles.
    Pinto RJ; Fernandes SC; Freire CS; Sadocco P; Causio J; Neto CP; Trindade T
    Carbohydr Res; 2012 Feb; 348():77-83. PubMed ID: 22154478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.
    Kaviya S; Santhanalakshmi J; Viswanathan B; Muthumary J; Srinivasan K
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):594-8. PubMed ID: 21536485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag.
    Elshahawy MF; Ahmed NA; Gad YH; Ali AE
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):129946. PubMed ID: 38340936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Ag-liposome nano composites.
    Barani H; Montazer M; Toliyat T; Samadi N
    J Liposome Res; 2010 Dec; 20(4):323-9. PubMed ID: 20131982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties.
    Reithofer MR; Lakshmanan A; Ping AT; Chin JM; Hauser CA
    Biomaterials; 2014 Aug; 35(26):7535-42. PubMed ID: 24933510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of BC/PAM-AgNPs nanocomposites for antibacterial applications.
    Yang G; Wang C; Hong F; Yang X; Cao Z
    Carbohydr Polym; 2015 Jan; 115():636-42. PubMed ID: 25439942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.
    Matai I; Sachdev A; Dubey P; Kumar SU; Bhushan B; Gopinath P
    Colloids Surf B Biointerfaces; 2014 Mar; 115():359-67. PubMed ID: 24412348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity.
    Boomi P; Prabu HG; Mathiyarasu J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():9-14. PubMed ID: 23201713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films.
    Kanmani P; Rhim JW
    Food Chem; 2014 Apr; 148():162-9. PubMed ID: 24262541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spherical LDH-Ag°-montmorillonite heterocoagulated system with a pH-dependent sol-gel structure for controlled accessibility of AgNPs immobilized on the clay lamellae.
    Deák Á; Janovák L; Tallósy SP; Bitó T; Sebők D; Buzás N; Pálinkó I; Dékány I
    Langmuir; 2015 Feb; 31(6):2019-27. PubMed ID: 25619227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag/Al(OH)3 mesoporous nanocomposite film as antibacterial agent.
    Seo YI; Hong KH; Kim DG; Kim YD
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):369-73. PubMed ID: 20675105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.