These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25964322)

  • 21. Colloidal behavior of proteins: effects of the second virial coefficient on solubility, crystallization and aggregation of proteins in aqueous solution.
    Valente JJ; Payne RW; Manning MC; Wilson WW; Henry CS
    Curr Pharm Biotechnol; 2005 Dec; 6(6):427-36. PubMed ID: 16375727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt-induced liquid-liquid phase separation of protein-surfactant complexes.
    Narayanan J; Deotare VW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4597-603. PubMed ID: 11970320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein phase behavior and crystallization: effect of glycerol.
    Sedgwick H; Cameron JE; Poon WC; Egelhaaf SU
    J Chem Phys; 2007 Sep; 127(12):125102. PubMed ID: 17902938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical consideration of osmotic pressure in aqueous protein/salt systems based on extended hard core Lennard-Jones potential.
    Pai SJ; Bae YC
    J Chem Phys; 2010 Oct; 133(15):154104. PubMed ID: 20969367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic instability in supersaturated lysozyme solutions: effect of salt and role of concentration fluctuations.
    Manno M; Xiao C; Bulone D; Martorana V; San Biagio PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011904. PubMed ID: 12935173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of salt on protein chemical potential determined by ternary diffusion in aqueous solutions.
    Annunziata O; Paduano L; Pearlstein AJ; Miller DG; Albright JG
    J Phys Chem B; 2006 Jan; 110(3):1405-15. PubMed ID: 16471691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments.
    Behlke J; Ristau O
    Biophys Chem; 1999 Jan; 76(1):13-23. PubMed ID: 10028229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bayesian analysis of static light scattering data for globular proteins.
    Yin F; Khago D; Martin RW; Butts CT
    PLoS One; 2021; 16(10):e0258429. PubMed ID: 34648536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The accurate measurement of second virial coefficients using self-interaction chromatography: experimental considerations.
    Quigley A; Heng JY; Liddell JM; Williams DR
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1103-11. PubMed ID: 23623796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying the mechanism of phase separation in aqueous solutions of globular proteins
    Brudar S; Gujt J; Spohr E; Hribar-Lee B
    Phys Chem Chem Phys; 2021 Jan; 23(1):415-424. PubMed ID: 33319872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series.
    Saridakis E; Donta K
    Chempluschem; 2024 Aug; 89(8):e202300733. PubMed ID: 38702291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and interaction in protein solutions as studied by small-angle neutron scattering.
    Chodankar S; Aswal VK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041931. PubMed ID: 16383444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloud-point temperature and liquid-liquid phase separation of supersaturated lysozyme solution.
    Lu J; Carpenter K; Li RJ; Wang XJ; Ching CB
    Biophys Chem; 2004 Apr; 109(1):105-12. PubMed ID: 15059663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-liquid phase separation and static light scattering of concentrated ternary mixtures of bovine alpha and gammaB crystallins.
    Thurston GM
    J Chem Phys; 2006 Apr; 124(13):134909. PubMed ID: 16613479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.
    Winter R
    Subcell Biochem; 2015; 72():151-76. PubMed ID: 26174381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH.
    Grigsby JJ; Blanch HW; Prausnitz JM
    Biophys Chem; 2001 Jul; 91(3):231-43. PubMed ID: 11551435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.