These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25964326)

  • 1. The rise of oxygen and siderite oxidation during the Lomagundi Event.
    Bachan A; Kump LR
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6562-7. PubMed ID: 25964326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotopic evidence for massive oxidation of organic matter following the great oxidation event.
    Kump LR; Junium C; Arthur MA; Brasier A; Fallick A; Melezhik V; Lepland A; Crne AE; Luo G
    Science; 2011 Dec; 334(6063):1694-6. PubMed ID: 22144465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon.
    Eguchi J; Seales J; Dasgupta R
    Nat Geosci; 2019; Dec 2019():. PubMed ID: 31807138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon.
    Daines SJ; Mills BJ; Lenton TM
    Nat Commun; 2017 Feb; 8():14379. PubMed ID: 28148950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence from massive siderite beds for a CO2-rich atmosphere before approximately 1.8 billion years ago.
    Ohmoto H; Watanabe Y; Kumazawa K
    Nature; 2004 May; 429(6990):395-9. PubMed ID: 15164058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon cycle inverse modeling suggests large changes in fractional organic burial are consistent with the carbon isotope record and may have contributed to the rise of oxygen.
    Krissansen-Totton J; Kipp MA; Catling DC
    Geobiology; 2021 Jul; 19(4):342-363. PubMed ID: 33764615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutralization potential determination of siderite (FeCO3) using selected oxidants.
    Haney EB; Haney RL; Hossner LR; White GN
    J Environ Qual; 2006; 35(3):871-9. PubMed ID: 16641324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A whiff of oxygen before the great oxidation event?
    Anbar AD; Duan Y; Lyons TW; Arnold GL; Kendall B; Creaser RA; Kaufman AJ; Gordon GW; Scott C; Garvin J; Buick R
    Science; 2007 Sep; 317(5846):1903-6. PubMed ID: 17901330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions.
    Eguchi J; Diamond CW; Lyons TW
    PNAS Nexus; 2022 May; 1(2):pgac036. PubMed ID: 36713325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.
    Canfield DE; Ngombi-Pemba L; Hammarlund EU; Bengtson S; Chaussidon M; Gauthier-Lafaye F; Meunier A; Riboulleau A; Rollion-Bard C; Rouxel O; Asael D; Pierson-Wickmann AC; El Albani A
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16736-41. PubMed ID: 24082125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks.
    Torres MA; Moosdorf N; Hartmann J; Adkins JF; West AJ
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8716-8721. PubMed ID: 28760954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event.
    Kipp MA; Stüeken EE; Bekker A; Buick R
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):875-880. PubMed ID: 28096405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment.
    Des Marais DJ; Strauss H; Summons RE; Hayes JM
    Nature; 1992 Oct; 359(6396):605-9. PubMed ID: 11536507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Authigenic carbonate and the history of the global carbon cycle.
    Schrag DP; Higgins JA; Macdonald FA; Johnston DT
    Science; 2013 Feb; 339(6119):540-3. PubMed ID: 23372007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland.
    Knoll AH; Hayes JM; Kaufman AJ; Swett K; Lambert IB
    Nature; 1986 Jun; 321(6073):832-8. PubMed ID: 11540872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carbon isotope composition of ancient CO2 based on higher-plant organic matter.
    Gröcke DR
    Philos Trans A Math Phys Eng Sci; 2002 Apr; 360(1793):633-58. PubMed ID: 12804297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transition to a sulphidic ocean approximately 1.84 billion years ago.
    Poulton SW; Fralick PW; Canfield DE
    Nature; 2004 Sep; 431(7005):173-7. PubMed ID: 15356628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraints on Paleoproterozoic atmospheric oxygen levels.
    Bellefroid EJ; Hood AVS; Hoffman PF; Thomas MD; Reinhard CT; Planavsky NJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8104-8109. PubMed ID: 30038009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carbon cycle and associated redox processes through time.
    Hayes JM; Waldbauer JR
    Philos Trans R Soc Lond B Biol Sci; 2006 Jun; 361(1470):931-50. PubMed ID: 16754608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.