BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 25964800)

  • 21. Xylooligosaccharides production from alkali-pretreated sugarcane bagasse using xylanases from Thermoascus aurantiacus.
    Brienzo M; Carvalho W; Milagres AM
    Appl Biochem Biotechnol; 2010 Oct; 162(4):1195-205. PubMed ID: 20066571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification.
    Morjanoff PJ; Gray PP
    Biotechnol Bioeng; 1987 Apr; 29(6):733-41. PubMed ID: 18576508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased enzymatic hydrolysis of sugarcane bagasse by a novel glucose- and xylose-stimulated β-glucosidase from Anoxybacillus flavithermus subsp. yunnanensis E13
    Liu Y; Li R; Wang J; Zhang X; Jia R; Gao Y; Peng H
    BMC Biochem; 2017 Mar; 18(1):4. PubMed ID: 28302049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses.
    Bian J; Peng P; Peng F; Xiao X; Xu F; Sun RC
    Food Chem; 2014 Aug; 156():7-13. PubMed ID: 24629931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst.
    Zhou X; Zhao J; Zhang X; Xu Y
    Bioresour Technol; 2019 Oct; 289():121755. PubMed ID: 31301946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lime pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse.
    Rabelo SC; Maciel Filho R; Costa AC
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1696-712. PubMed ID: 23334836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of enzyme-catalyzed hydrolysis of steam-exploded sugarcane bagasse.
    Aguiar RS; Silveira MHL; Pitarelo AP; Corazza ML; Ramos LP
    Bioresour Technol; 2013 Nov; 147():416-423. PubMed ID: 24007721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover.
    Lu Y; Mosier NS
    Biotechnol Bioeng; 2008 Dec; 101(6):1170-81. PubMed ID: 18781694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the production of sugar and byproducts from acid bisulfite pretreatment and enzymatic hydrolysis of Douglas-fir.
    Liu Y; Wang J; Wolcott M
    Bioresour Technol; 2017 Jan; 224():389-396. PubMed ID: 27806885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover.
    Shen J; Wyman CE
    Bioresour Technol; 2011 Oct; 102(19):9111-20. PubMed ID: 21764298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotechnological production of xylitol: enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolysate.
    Sarrouh BF; de Freitas Branco R; da Silva SS
    Appl Biochem Biotechnol; 2009 May; 153(1-3):163-70. PubMed ID: 19214792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse.
    Zhang H; Lyu G; Zhang A; Li X; Xie J
    Bioresour Technol; 2018 Oct; 265():93-101. PubMed ID: 29885498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant.
    Zhang H; Ye G; Wei Y; Li X; Zhang A; Xie J
    Bioresour Technol; 2017 Apr; 229():96-103. PubMed ID: 28110130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals.
    Zhang W; You Y; Lei F; Li P; Jiang J
    Bioresour Technol; 2018 Oct; 265():387-393. PubMed ID: 29929106
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.
    Jensen JR; Morinelly JE; Gossen KR; Brodeur-Campbell MJ; Shonnard DR
    Bioresour Technol; 2010 Apr; 101(7):2317-25. PubMed ID: 20018506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment.
    Kuo CH; Lee CK
    Bioresour Technol; 2009 Jan; 100(2):866-71. PubMed ID: 18713663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using high pressure processing (HPP) to pretreat sugarcane bagasse.
    Castañón-Rodríguez JF; Torrestiana-Sánchez B; Montero-Lagunes M; Portilla-Arias J; Ramírez de León JA; Aguilar-Uscanga MG
    Carbohydr Polym; 2013 Oct; 98(1):1018-24. PubMed ID: 23987442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.
    Goldmann WM; Ahola J; Mikola M; Tanskanen J
    Bioresour Technol; 2017 May; 232():176-182. PubMed ID: 28231535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.
    Nghiem NP; Montanti J; Kim TH
    Appl Biochem Biotechnol; 2016 May; 179(2):237-50. PubMed ID: 26797927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse.
    Tsuchida JE; Rezende CA; de Oliveira-Silva R; Lima MA; d'Eurydice MN; Polikarpov I; Bonagamba TJ
    Biotechnol Biofuels; 2014; 7(1):127. PubMed ID: 25342969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.