These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 25965095)
1. Online Continuous Flow Differential Electrochemical Mass Spectrometry with a Realistic Battery Setup for High-Precision, Long-Term Cycling Tests. Berkes BB; Jozwiuk A; Vračar M; Sommer H; Brezesinski T; Janek J Anal Chem; 2015 Jun; 87(12):5878-83. PubMed ID: 25965095 [TBL] [Abstract][Full Text] [Related]
2. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. McCloskey BD; Garcia JM; Luntz AC J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476 [TBL] [Abstract][Full Text] [Related]
3. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247 [TBL] [Abstract][Full Text] [Related]
4. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
5. The carbon electrode in nonaqueous Li-O2 cells. Ottakam Thotiyl MM; Freunberger SA; Peng Z; Bruce PG J Am Chem Soc; 2013 Jan; 135(1):494-500. PubMed ID: 23190204 [TBL] [Abstract][Full Text] [Related]
6. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
7. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. Wen R; Hong M; Byon HR J Am Chem Soc; 2013 Jul; 135(29):10870-6. PubMed ID: 23808397 [TBL] [Abstract][Full Text] [Related]
8. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. Armstrong AR; Holzapfel M; Novák P; Johnson CS; Kang SH; Thackeray MM; Bruce PG J Am Chem Soc; 2006 Jul; 128(26):8694-8. PubMed ID: 16802836 [TBL] [Abstract][Full Text] [Related]
10. Cell Design for Electrochemical Characterizations of Metal-Ion Batteries in Organic and Aqueous Electrolyte. Bani Hashemi A; La Mantia F Anal Chem; 2016 Aug; 88(16):7916-20. PubMed ID: 27439309 [TBL] [Abstract][Full Text] [Related]
11. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
12. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054 [TBL] [Abstract][Full Text] [Related]
13. Gas Evolution in LiNi0.5Mn1.5O4/Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. Michalak B; Berkes BB; Sommer H; Bergfeldt T; Brezesinski T; Janek J Anal Chem; 2016 Mar; 88(5):2877-83. PubMed ID: 26813026 [TBL] [Abstract][Full Text] [Related]
14. Formation of interfacial layer and long-term cyclability of Li-O₂ batteries. Nasybulin EN; Xu W; Mehdi BL; Thomsen E; Engelhard MH; Massé RC; Bhattacharya P; Gu M; Bennett W; Nie Z; Wang C; Browning ND; Zhang JG ACS Appl Mater Interfaces; 2014 Aug; 6(16):14141-51. PubMed ID: 25068384 [TBL] [Abstract][Full Text] [Related]
15. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related]
16. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries. Noh HJ; Ju JW; Sun YK ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348 [TBL] [Abstract][Full Text] [Related]
17. Li-O2 battery with a dimethylformamide electrolyte. Chen Y; Freunberger SA; Peng Z; Bardé F; Bruce PG J Am Chem Soc; 2012 May; 134(18):7952-7. PubMed ID: 22515410 [TBL] [Abstract][Full Text] [Related]
18. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system. Li H; Wang Y; Na H; Liu H; Zhou H J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical and structural study of layered P2-type Na(2/3)Ni(1/3)Mn(2/3)O2 as cathode material for sodium-ion battery. Wen Y; Wang B; Zeng G; Nogita K; Ye D; Wang L Chem Asian J; 2015 Mar; 10(3):661-6. PubMed ID: 25641817 [TBL] [Abstract][Full Text] [Related]
20. Organic-acid-assisted fabrication of low-cost Li-rich cathode material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O2) for lithium-ion battery. Zhao T; Chen S; Li L; Zhang X; Wu H; Wu T; Sun CJ; Chen R; Wu F; Lu J; Amine K ACS Appl Mater Interfaces; 2014 Dec; 6(24):22305-15. PubMed ID: 25412470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]